Alüminyum

sembolü Al, atom numarası 13 olan element

Alüminyum (Al)

H Periyodik tablo He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba   Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og  
  La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
  Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr  


Temel özellikleri
Atom numarası 13
Element serisi Metaller
Grup, periyot, blok 13, 3, p
Görünüş Gümüşümsü
Alüminyum
Kütle numarası 26,9815386(8) g/mol
Elektron dizilimi Ne 3s² 3p1
Enerji seviyesi başına
Elektronlar
2, 8, 3
CAS kayıt numarası {{{CAS_kayıt_numarası}}}
Fiziksel Özellikleri
Maddenin hâli katı
Yoğunluk 2,70 g/cm³
Sıvı hâldeki yoğunluğu 2,375 g/cm³
Ergime noktası 933,47 °K
660,32 °C
Kaynama noktası 2792 °K
2519 °C
Ergime ısısı 10,71 kJ/mol
Buharlaşma ısısı 294,0 kJ/mol
Isı kapasitesi 24,2 J/(mol·K)
Atom özellikleri
Kristal yapısı Yüzey merkezli kübik
Yükseltgenme seviyeleri (3+) (amfoter oksit)
Elektronegatifliği 1,61 Pauling ölçeği
İyonlaşma enerjisi 577,5 kJ/mol
Atom yarıçapı 143 pm
Atom yarıçapı (hes.) 118 pm
Kovalent yarıçapı 118 pm
Van der Waals yarıçapı 184 pm
Diğer özellikleri
Elektrik direnci 26,50 nΩ·m (20°C'de)
Isıl iletkenlik 237 W/(m·K)
Isıl genleşme 23,1 µm/(m·K) (25°C'de)
Ses hızı 5000 m/s (20 °C'de)
Mohs sertliği 2,75
Vickers sertliği 167 MPa
Brinell sertliği 245 MPa

Alüminyum, atom numarası 13 ve simgesi Al olan kimyasal element. Gümüş renkte, sünek bir metaldir. Doğada genellikle boksit cevheri halinde bulunur ve oksidasyona karşı üstün direnci ile tanınır. Bu direncin temelinde pasivasyon özelliği yatar. Endüstrinin pek çok kolunda milyonlarca farklı ürünün yapımında kullanılmakta olup, dünya ekonomisi içinde çok önemli bir yeri vardır. Alüminyumdan üretilmiş yapısal bileşenler uzay ve havacılık sanayii için vazgeçilmezdir. Hafiflik ve yüksek dayanım özellikleri gerektiren taşımacılık ve inşaat sanayiinde geniş kullanım alanı bulur.

Özellikleri değiştir

Alüminyum, yumuşak ve hafif bir metal olup mat gümüşümsü renktedir. Bu renk, havaya maruz kaldığında üzerinde oluşan ince oksit tabakasından ileri gelir. Alüminyum, zehirleyici ve manyetik değildir. Kıvılcım çıkarmaz. Saf alüminyumun çekme dayanımı yaklaşık 49 megapascal (MPa) iken alaşım haline getirildiğinde bu değer 700 MPa'a çıkar. Yoğunluğu, çeliğin veya bakırın yaklaşık üçte biri kadardır. Kolaylıkla dövülebilir, makinede işlenebilir ve dökülebilir. Çok üstün korozyon özelliklerine sahip olması, üzerinde oluşan oksit tabakasının koruyucu olmasındandır. Elektrik iletkenliği %64,94 IACS'dir (saf Al, 2 °C'de). Erime sıcaklığı 660 °C, kaynama sıcaklığı ise 2519 °C'dir.[1]

Doğal oluşum değiştir

Ayrıca bkz. Boksit üretimine göre ülkelerin listesi

Dünya değiştir

 
Boksit, önemli bir alüminyum cevheridir. Kırmızı-kahverengi renk, demir oksit minerallerinin varlığından kaynaklanır.

Genel olarak, Dünya kütlece yaklaşık %1.59 alüminyumdur (kütlece yedinci sıradadır).[2] Alüminyum, Evren'in geneline kıyasla Dünya'nın kabuğunda daha büyük oranda vardır çünkü alüminyum kolayca oksitlenir ve kayalara bağlanıp kalır. Dünya'nın kabuğu'nda daha az reaktif metaller çekirdeğe doğru batar.[3] Yerkabuğunda alüminyum en bol bulunan metalik elementtir (kütlece %8.23[4]) ve tüm elementler arasında en bol bulunan üçüncü elementtir. (oksijen ve silikondan sonra).[5] Yerkabuğundaki çok sayıda silikat alüminyum içerir.[6] Buna karşılık, Dünya'nın manto kütlesinin sadece %2.38'i alüminyumdur.[7] Alüminyum ayrıca deniz suyunda 2 μg/kg konsantrasyonda bulunur.[4]

Oksijene olan güçlü birleşme eğilimi (ing: affinity) nedeniyle, alüminyum element halinde neredeyse hiç bulunmaz; bunun yerine oksitlerde veya silikatlarda bulunur. Feldspatlar, yerkabuğundaki en yaygın mineral grubu, alüminosilikatlardır. Alüminyum ayrıca beril, kriyolit, garnet, spinel ve turkuaz minerallerinde de bulunur.[8] Al2O3 içindeki krom ve demir gibi safsızlıklar, sırasıyla yakut ve safir gibi değerli taş ürünlerini verir.[9] Doğal alüminyum metali son derece nadirdir ve yalnızca belirli volkanların iç kısımları gibi düşük oksijenli fugasite ortamlarda küçük bir faz olarak bulunabilir.[10] Güney Çin Denizi'nin kuzeydoğusunda kıtasal eğimdeki soğuk sızıntılarda doğal alüminyum bildirilmiştir. Bu tortuların, tetrahidroksoalüminat Al(OH)4'un bakteriyel redüksiyonundan kaynaklanmış olması mümkündür.[11]

Alüminyum bol bir element olmasına rağmen, tüm alüminyum mineralleri ekonomik olarak uygun metal kaynakları değildir. Hemen hemen tüm metalik alüminyum, cevher boksit (AlOx(OH)3–2x)'dan üretilir. Boksit, tropikal iklim koşullarında düşük demir ve silika anakayasının kötü havadan ayrışma ürünü olarak oluşur.[12] 2017 yılında çoğu boksit Avustralya, Çin, Gine ve Hindistan'da çıkarıldı.[13]

Yerkabuğunda çok nadir bulunduğundan dolayı alüminyum bir zamanlar altından bile daha kıymetli görülmüştür.

Tarihçe değiştir

 
Londra'da bulunan ve Eros adıyla bilinen bu heykel, 1893'te yapılmış olup alüminyumdan üretilmiş ilk heykellerden biridir.

Eski Yunanlar ve Romalılar, alüminyum(æljʊˈmɪniəm)un tuzlarını, boyaların renklerini sabitleştirmede ve kan durdurucu olarak kullanmışlardır. Alum günümüz tıbbında hala kan durdurucu ve damar büzücü olarak kullanılmaktadır.

Friedrich Wöhler'in, alüminyumu, 1827'de, susuz alüminyum klorürü potasyum ile karıştırarak ayrıştıran ilk kişi olduğu bilinse de metal, o tarihten iki sene kadar önce, Danimarkalı bir fizikçi ve kimyacı olan Hans Christian Ørsted tarafından saf olmayan bir formda üretilmiştir. Dolayısıyla almanaklarda ve kimya literatüründe Øersted'in adı alüminyumu bulan kişi olarak geçer.[14] Fransız Henri Saint-Claire Deville, 1846'da, Wöhler'in metodunu, daha pahalı olan potasyum yerine sodyum kullanarak geliştirmiştir.

Amerikalı Charles Martin Hall 1886'da, alüminyumun elektrolitik bir işlemle eldesine ilişkin bir patent başvurusunda (patent no: 400655) bulunmuş, aynı yıl, Hall'un bu buluşundan tamamen habersiz olmak üzere Fransız Paul Héroult da aynı tekniği Avrupa'da geliştirmiştir. Bu nedenle iki bilim adamının adı verilen Hall-Heroult işlemi, günümüzde alüminyumun cevherinden eldesinde bütün dünyada kullanılan temel yöntemdir.

ABD'deki Washington anıtının zirvesinin yapımında alüminyum kullanılması kararlaştırılmış ve o tarihte alüminyumun yaklaşık 30 gramının maliyeti bu projede çalışan bir işçinin yevmiyesinin iki katına eşdeğer olmuştur.[15]

Adolf Hitler'in yönetime gelişinden hemen sonraki yıllarda Almanya, alüminyum üretiminde dünya lideri olmuştur. Ancak 1942'de, ABD'de yeni hidroelektrik santral projelerinin (örneğin, Grand Coulee Barajı) devreye alınması, ABD'ye Nazi Almanya'sının baş edemeyeceği bir üstünlük vermiştir. Bu üstünlük, dört yıl içinde 60 bin savaş uçağı yapmaya yetecek kadar alüminyum üretimi şeklinde ortaya çıkmıştır.

Üretim ve arıtma değiştir

 
(Al) Alüminyum çubuğunun kazınmış yüzeyi.

Ayrıca bkz. Birincil alüminyum üretimine göre ülkelerin listesi

Alüminyumun ticari üretim tarihi 100 yıldan biraz fazladır.

Alüminyum ilk keşfedildiği yıllarda cevherinden ayrıştırılması çok zor olan bir metal idi. Alüminyum arıtılması en zor metallerden biridir. Bunun nedeni çok hızlı oksitlenmesi, oluşan bu oksit tabakasının çok kararlı oluşu ve demirdeki pasın aksine yüzeyden sıyrılmayışıdır.

Alüminyum üretimi çok enerji tüketir ve bu yüzden üreticiler izabe tesislerini elektriğin hem bol hem de ucuz olduğu yerlere yerleştirir.[16] 2019 itibarıyla dünyanın en büyük alüminyum izabecileri, Çin, Hindistan, Rusya, Kanada ve Birleşik Arap Emirlikleri'nde bulunurken,[17] Çin, %55 dünya alüminyum payı ile açık ara en büyük alüminyum üreticisidir.

Uluslararası Kaynak Paneli'nin Toplumdaki Metal Stokları raporu'na göre (ingilizce:Metal Stocks in Society report), toplumda (yani arabalarda, binalarda, elektronikte vb.) kullanılan küresel kişi başına alüminyum stoğu 80 kg (180 lb)'dır: Bunun çoğu, (sadece 35 kg (77 lb))'nı kullanan daha az gelişmiş ülkeler yerine (kişi başına 350-500 kg (770-1.100 lb)) kullanım ile) daha gelişmiş ülkelerdedir.[18]

Alüminyum oksidin ergime sıcaklığı yaklaşık 2000 °C olduğundan dolayı ekonomik olmaktan uzaktır.

Alüminyum üretimi, boksit kayanın yerden çıkarılmasıyla başlar. Boksit, Bayer işlemi kullanılarak işlenir ve alümina'ya dönüştürülür, daha sonra Hall–Héroult işlemi kullanılarak işlenir ve nihai alüminyum metali elde edilir.

Bayer işlemi değiştir

Bkz. Boksit üretimine göre ülkelerin listesi

Bu yöntemde alüminyum oksit, ergimiş kriyolit içinde çözündürülür ve daha sonra saf metale indirgenir. İndirgenme hücrelerinin çalışma sıcaklığı 950-980 °C civarındadır.

Kriyolit, Grönland adasında bulunan doğal bir mineraldir fakat alüminyum üretimi için sentetik olarak yapılır. Kriyolit, alüminyum ve sodyumun florürlerinin bir karışımı olup, formülü Na3AlF6 şeklindedir.

Alüminyum oksit (beyaz toz), yaklaşık %30-40 demir içerdiği için kırmızı renkli olan boksitin arıtılmasıyla üretilir.

Bayer işlemi daha önceleri kullanılan Deville işleminin yerini aldı.

Boksit, Bayer işlemi ile alüminaya dönüştürülür. Boksit, homojen bir bileşim içinde karıştırılır ve sonra öğütülür. Elde edilen bulamaç sıcak sodyum hidroksit çözeltisi ile karıştırılır; daha sonra karışım atmosfer basıncının üstündeki basınçta sindirici bir kapta işlenir, alüminyum hidroksit boksitte çözülürken safsızlıkları nispeten çözünmez bileşiklere dönüştürür:[19]

Al(OH)3 + Na+ + OH → Na+ + [Al(OH)4]

Bu reaksiyondan sonraki bulamaç, atmosfer kaynama noktasının üzerinde bir sıcaklıktadır. Basınç azaldıkça buhar çıkarılarak soğutulur. Boksit kalıntısı çözeltiden ayrılır ve atılır. Katısız çözelti, küçük alüminyum hidroksit kristalleri ile tohumlanır; bu, [Al(OH)4] iyonlarının alüminyum hidroksite ayrışmasına neden olur. Alüminyumun yaklaşık yarısı çöktükten sonra karışım sınıflandırıcılara gönderilir. Küçük alüminyum hidroksit kristalleri, tohumlama ajanları olarak hizmet etmek üzere toplanır; kaba parçacıklar ısıtılarak alüminaya dönüştürülür; fazla çözelti buharlaştırma yoluyla çıkarılır, (gerekirse) saflaştırılır ve geri dönüştürülür.[19]

Wöhler işleminin yerini alan elektroliz yönteminde her iki elektrot da karbondan yapılır. Cevher bir kez ergimiş hale geldikten sonra iyonlar serbestçe dolaşmaya başlar. Negatif elektrotta (katot) gerçekleşen reaksiyon:

Al3+ + 3e- → Al

olup alüminyum iyonunun elektron alarak indirgendiğini gösterir. Alüminyum metali daha sonra hücrenin tabanına sıvı halde çöker ve buradan sifonlanarak dışarı alınır.

Öte yandan, pozitif elektrotta (anot) oksijen gazı oluşur:

2O2- → O2 + 4e-

Anot karbonu bu oksijen ile oksitlenerek tükenir ve dolayısıyla düzenli aralıklarla yenilenmesi gerekir:

O2 + C → CO2

Katotlar elektroliz işlemi sırasında, anotların tersine tükenmezler çünkü katotta oksijen çıkışı olmaz. Katodun karbonu, hücre içinde sıvı alüminyum ile örtülmüş olduğu için korunmalıdır. Öte yandan katotlar, elektrokimyasal işlemler gereği erozyona uğrarlar. Elektrolizde uygulanan akıma bağlı olarak, hücrelerin 5-10 yılda bir tümüyle yenilenmesi gerekir.

Hall-Héroult işlemiyle alüminyum elektrolizi çok elektrik enerjisi tüketse de alternatif yöntemler gerek ekonomik gerekse ekolojik olarak uygulanabilirlikten uzaktır. Dünya genelinde, ortalama spesifik enerji tüketimi, kg Al başına yaklaşık 15±0.5 kilowatt saat'tir (52-56 MJ/kg). Modern tesislerde bu rakam yaklaşık 12.8 kW·h/kg (46.1 MJ/kg) civarındadır. İndirgeme hattının taşıdığı elektrik akımı, eski teknolojilerde 100-200 kA iken bu değer, modern tesislerde 350 kA'e kadar çıkmış olup 500 kA'lik hücrelerde deneme çalışmaları yapıldığı bilinmektedir.

Hall–Héroult işlemi değiştir

 
Ekstrüzyon alüminyum kütükler

Ayrıca bakınız: Alüminyum oksit üreten ülkelerin listesi

Alümina'nın alüminyum metale dönüştürülmesi Hall–Héroult işlemiyle sağlanır. Bu enerji yoğun süreçte, kriyolit (Na3AlF6) ile kalsiyum florür (950 ve 980 °C (1.740 ve 1.800 °F)'de erimiş karışımdaki alümina çözeltisi metalik alüminyum üretmek için elektroliz edilir. Sıvı alüminyum metal çözeltinin dibine çöker ve akıtılır ve daha sonraki işlemler için genellikle alüminyum kütükler (ingilizce: billet) adı verilen büyük bloklara dökülür.[20]

Elektroliz hücresinin anotları, florür korozyonuna karşı en dirençli malzeme olan karbondan yapılmıştır veya işlem sırasında pişirilir ya da önceden fırınlanır. Söderberg anotları olarak da adlandırılan birincisi güç açısından daha az verimlidir ve pişirmede açığa çıkan dumanların toplanması maliyetlidir, bu nedenle katotları önceden pişirmek için güç, enerji ve işçilikten tasarruf edilmesine rağmen, önceden pişirilmiş anotlarla değiştirilmelerinin nedeni budur. Anotlar için karbon tercihen saf olmalıdır, böylece ne alüminyum ne de elektrolit kül ile kirlenmez. Karbonun korozyona karşı direncine rağmen, üretilen her bir kilogram alüminyum için hala 0.4–0.5 kg oranında tüketilir.

Katotlar antrasit'den yapılmıştır, çok saf olmaları gereksizdir çünkü safsızlıkların süzülmesi çok yavaştır. Katot, üretilen her kilogram alüminyum için 0.02-0.04 kg oranında tüketilir. Bir hücre genellikle katodun arızalanmasının ardından 2-6 yıl sonra sonlandırılır.[20]

Hall-Heroult işlemi, saflığı %99'un üzerinde olan alüminyum üretir. Hoopes işlemi ile daha fazla saflaştırma yapılabilir. Bu işlem, erimiş alüminyumun sodyum, baryum ve alüminyum florür elektroliti ile elektrolizini içerir. Elde edilen alüminyumun saflığı %99.99'dur.[20][21]

Elektrik gücü, izabe tesisinin konumuna bağlı olarak, alüminyum üretim maliyetinin yaklaşık %20 ila %40'ını temsil eder. Alüminyum üretimi, Amerika Birleşik Devletleri'nde üretilen elektriğin kabaca %5'ini tüketir.[22] Bu nedenle, Hall-Héroult sürecine alternatifler araştırıldı ancak hiçbirinin ekonomik olarak uygulanabilir olmadığı ortaya çıktı.[20]

Alüminyum üretim maliyetinin %20-40'ını, tesisin bulunduğu yere göre değişmek üzere, elektrik enerjisi oluşturmaktadır. Bu nedenle alüminyum üreticisi işletmeler, Güney Afrika, Yeni Zelanda'nın Güney Adası, Avustralya, Çin, Orta Doğu, Rusya, İzlanda, Kanada'da Québec gibi elektrik enerjisinin bol ve ucuz olduğu bölgelere yakın olmak eğilimindedirler.

Çin 2004 itibarıyla, alüminyum üretiminde dünya lideridir.

Geri dönüşüm değiştir

 
Geri dönüştürülebilir atıklar için ortak kutular ve geri dönüştürülemeyen atıklar için bir kutu. Üstü sarı olan çöp kutusu "alüminyum" olarak etiketlenmiştir. Rodos, Yunanistan

Geri kazanım işlemi 1900'lü yılların başlarından beri uygulanmakta olup yeni değildir. Metalin geri dönüşüm yoluyla geri kazanılması, alüminyum endüstrisinin önemli bir görevi haline geldi. Geri dönüşüm, 1960'ların sonlarına kadar, alüminyum içecek kutuları kullanımının artmasıyla kamuoyunun bilinçlendirilmesine kadar önemsiz bir faaliyetti.[23] Diğer geri döndürülen alüminyum kaynakları arasında otomobil parçaları, pencere ve kapılar, cihazlar ve konteynerler sayılabilir.

Alüminyumun hurdalardan geri kazanımı, günümüz alüminyum endüstrisinin önemli bir bileşeni haline gelmiştir.

Geri kazanım, girdi malzemesinin %15'ine kadar önemli bir kısmını cüruf, (kül benzeri oksit) olarak kaybolmasına rağmen, cevherden alüminyum üretmek için kullanılan enerjinin yalnızca %5'ini gerektiren hurdanın eritilmesini kapsar.[24] Bir alüminyum yığın eritici, %1'in altında bildirilen değerlerle çok daha az cüruf üretir.[25]

Birincil alüminyum üretiminden ve ikincil geri dönüşüm işlemlerinden kaynaklanan beyaz cüruf, endüstriyel olarak çıkarılmış olabilecek yararlı miktarlarda alüminyum içerir. İşlem, son derece karmaşık atık malzeme ile birlikte alüminyum kütükler üretir. Bu israfın yönetimi zordur. Su ile reaksiyona girerek hava ile temas ettiğinde kendiliğinden tutuşan bir gaz karışımı (diğerlerinin yanı sıra hidrojen, asetilen ve amonyak dahil) açığa çıkarır;[26] nemli hava ile temas çok miktarda amonyak gazının salınmasına neden olur. Bu zorluklara rağmen, atık asfalt ve beton'da dolgu maddesi olarak kullanılır.[27]

Güvenlik önlemleri değiştir

Alüminyumun canlı hücreler üzerinde yararlı bir işleve sahip olduğu gözlemlenmemiştir. Bazı kişilerde, alüminyumun herhangi bir formundan kaynaklanabilen temas dermatiti (deri iltihabı), stiptik (kan durdurucu) veya ter önleyici ürünler kullanımıyla birlikte ortaya çıkan kaşıntılı kızarıklık, alüminyum tencerelerde pişen yemeklerin yenmesiyle ortaya çıkan sindirim bozuklukları ve besinlerin emiliminin durması, ve Rolaids, Amphojel, ve Maalox gibi antasit (asit giderici) ilaçların kullanımıyla ortaya çıkan kusma gibi zehirlenme belirtileri şeklinde alerjik reaksiyonlar yaratabilir. Diğer kişilerde alüminyum, ağır metaller kadar zehirli olmasa da ve alüminyumdan yapılmış mutfak gereçleri kullanımının (yüksek korozyon direnci ve iyi ısı iletkenliği nedeniyle tercih edilir), genelde alüminyum zehirlenmesine yol açtığı kanıtlanmamış olsa da, yüksek dozlarda alındığında zehirlenme belirtileri gösterebilir. Alüminyum bileşikleri içeren antasitlerin aşırı dozda tüketimi ve alüminyum içeren ter önleyicilerin aşırı miktarda kullanımı zehirlenme nedeni olabilir. Alüminyumun Alzheimer hastalığına yol açtığı iddia edilmişse de bu araştırmanın tam tersine, Alzeimer hastalığının neden olduğu tahribatın, vücutta alüminyum birikimine yol açtığı şeklinde çürütülmüştür. Özetle, eğer alüminyum zehirlenmesi varsa bunun oldukça spesifik bir mekanizma ile gerçekleşmesi gerekir. Zira insanın yaşamı boyunca, toprakta doğal kil mineralinin içindeki alüminyum ile olan teması zaten yeterince yüksektir.

Alüminyumun, onun hızla korozyona uğramasına neden olan bazı kimyasallarla temas etmesinden kaçınmak gerekir. Örneğin, bir parça alüminyumun yüzeyine damlatılan çok küçük bir miktar cıva, koruyucu alüminyum oksit tabakasını kolayca deler ve birkaç saat içinde devasa yapı kirişleri bile önemli derecede zayıflayabilir. Bu nedenle, pek çok havayolu şirketi, uçakların yapısal iskeletinde alüminyum önemli bir yer tuttuğu için cıvalı termometrelere izin vermemektedir.

Kimyası değiştir

Oksidasyon kademesi 1 değiştir

  • Alüminyum hidrojen atmosferi altında 1500 °C'ye ısıtıldığında AlH üretilir.
  • Alüminyumun normal oksidi (Al2O3) silisyum ile 1800 °C'de vakum altında ısıtıldığında Al2O üretilir.
  • Al2S3 ün alüminyum talaşları ile 1300 °C'de vakum altında ısıtılması ile Al2S üretilir. Ancak hızlıca başlangıç maddelerine ayrışır. İki değerlikli selenyum da benzer şekilde yapılır.
  • Üç değerlikli halojenürleri, alüminyum ile ısıtıldıklarında -AlF- -AlCl- ve -AlBr- gaz fazında elde edilebilir.

Oksidasyon kademesi 2 değiştir

  • Alüminyum tozu oksijenle yandığında alüminyum alt-oksidinin (AlO) varlığı gösterilebilir.

Oksidasyon kademesi 3 değiştir

  • Fajans kuralı, basit bir üç değerlikli katyonun (Al3+) susuz tuzlarda veya Al2O3 gibi ikili bileşiklerde bulunamayacağını gösterir. Hidroksit zayıf bir bazdır ve karbonat gibi zayıf baz olan alüminyum tuzları hazırlanamaz. Nitrat gibi kuvvetli asit tuzları kararlı ve suda çözünürler. En az altı moleküllü hidratlar oluştururlar.
  • Alüminyum hidrür (AlH3)n, trimetil-alüminyum ve aşırı oksijen kullanarak üretilebilir. Havada patlayarak yanar. Alüminyum klorürün eter çözeltisi içinde lityum hidrürle muamelesi sonucu da üretilebilir. Ancak çözücüden ayrıştırılamaz.
  • Alüminyum karbür (Al4C3) elementlerin oluşturduğu karışımın 1000 °C'nin üzerine ısıtılması ile üretilebilir. Açık sarı renkli kristallerinin kompleks bir kafes yapısı vardır ve su veya seyreltik asitle metan gazı verirler. Asetilit (Al2(C2)3), ısıtılmış alüminyum üzerinden asetilen geçirmek suretiyle üretilir.
  • Alüminyum nitrür (AlN), elementlerinden 800 °C'de üretilebilir. Su ile hidrolize olarak amonyak ve alüminyum hidroksit verir.
  • Alüminyum fosfit (AlP), benzer şekilde yapılır ve fosfin vererek hidrolize olur.
  • Alüminyum oksit (Al2O3), doğada korundum olarak bulunur ve alüminyumun oksijenle yakılması veya hidroksit, nitrat veya sülfatının ısıtılmasıyla elde edilir. Kıymetli taş olarak sertliği elmas, bor nitrür ve karborundum'dan sonra gelir. Suda hemen hemen hiç çözünmez.
  • Alüminyum hidroksit, bir alüminyum tuzunun sulu çözeltisine amonyak ilavesi yoluyla jelatinimsi bir çökelek şeklinde elde edilebilir. Amfoteriktir; hem çok zayıf bir asit olup hem de alkalilerle alüminatlar yapar. Değişik kristal formlarında bulunur.
  • Alüminyum sülfür (Al2S3), alüminyum tozu üzerinden hidrojen sülfür geçirerek üretilebilir. Polimorfiktir.
  • Alüminyum florür (AlF3), hidroksitinin HF ile muamelesi sonucu veya elementlerinden üretilir. 1291 °C'de ergimeksizin gaz fazına geçen dev bir molekül yapısına sahiptir. Çok inerttir. Diğer üç değerliürleri dimerik ve köprü benzeri yapıdadırlar.
  • Ampirik formülü AlR3 olan organo-metalik bileşikleri vardır ve dev yapılı moleküller değilse de en azından dimerik veya trimeriktirler. Organik sentez alanında (örneğin, trimetil alüminyum) kullanılırlar.
  • Alümino-hidrürler bilinen en elektro-pozitif yapılardır. İçlerinde en kullanışlı olan lityum alüminyum hidrür'dür (Li[AlH4]). Isıtıldığında lityum hidrür, alüminyum ve hidrojene parçalanır ve su ile hidrolize olur. Organik kimyada pek çok kullanım alanı vardır. Alümino-halojenürler de benzer yapıya sahiptirler.

Kullanım alanları değiştir

 
Transistör

Alüminyum kolay soğuyup ısıyı emen bir metal olması nedeniyle soğutma sanayinde geniş bir yer bulur. Bakırdan daha ucuz olması ve daha çok bulunması, işlenmesinin kolay olması ve yumuşak olması nedeniyle birçok sektörde kullanılan bir metaldir.

Alüminyum genel manada soğutucu yapımında, spot ışıklarda, mutfak gereçleri yapımında, hafiflik esas olan araçların yapımında (uçak, bisiklet, otomobil motorları, motosikletler vb.) kullanılır. Bunun yanında sanayide önemli bir madde olan alüminyum, kapı pencere ve bina cephesi kaplamalarında kullanılmakla beraber günlük hayatta her zaman karşımıza çıkan bir metaldir.

Alüminyumun diğer bir kullanım alanı ise asenkron motorlardır. Saf alüminyum (~%99.7 Al) basınçlı döküm yöntemi ile asenkron motorların rotor üretiminde kullanılır. Bakıra göre hafifliği, ucuzluğu ve göreceli olarak iyi elektriksel iletkenliğe sahip olması (~%59-60 IACS) alüminyumun asenkron motor endüstrisinde geniş bir yer almasını sağlamaktadır.[28]

Adı üzerine değiştir

İngilizce konuşulan ülkelerde, adının hem aluminium hem de aluminum şeklinde yazılması ve uygun tarzda okunması yaygındır. ABD'de aluminium pek bilinmemekte ve daha çok aluminum kullanılmaktadır. ABD'nin dışındaki diğer ülkelerde ise durum tam tersine olup aluminium şeklinde yazılış tarzı daha iyi bilinmektedir. Ancak Kanada'da her iki yazılış tarzı da yaygındır.

İngilizcenin hakimiyeti dışındaki ülkelerde ise "ium" şeklindeki yazılış daha yaygındır. Hem Almanca hem de Fransızcada sözcük aluminium şeklindedir.

"International Union of Pure and Applied Chemistry" (IUPAC) organizasyonu 1990'da aluminium kullanımını, dünya standardı olarak onaylamıştır. Ancak üç yıl sonra aluminum sözcüğünü de kabul edilebilir bir terim olarak tasdik etmiştir.

Kaynakça değiştir

Genel değiştir

  1. http://www.chemicalelements.com/elements/al.html#isotopes 11 Ocak 2006 tarihinde Wayback Machine sitesinde arşivlendi.
  2. Binczewski, G.J. (1995). The Point of a Monument: A History of the Aluminum Cap of the Washington Monument. JOM, 47 (11) (1995), pp. 20–25.[2]24 Ocak 2016 tarihinde Wayback Machine sitesinde arşivlendi.
  3. ASM International. ASM Metals HandBook Volume 02 - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (2). 1992, p. 506-507
  4. Los Alamos National Laboratory – Aluminum 5 Ocak 2006 tarihinde Wayback Machine sitesinde arşivlendi.
  5. World Wide Words23 Ekim 2019 tarihinde Wayback Machine sitesinde arşivlendi. Bir İngilizin bakış açısıyla alüminyumun yazılışının tarihçesi.
  6. Oxford English Dictionary - "aluminum" ve "aluminium" kayıtlarına üye olmak koşuluyla ulaşılabiliyor [3]11 Ocak 2008 tarihinde Wayback Machine sitesinde arşivlendi.

Özel değiştir

  1. ^ "Saf metallerin fiziksel ve kimyasal özellikleri". 11 Temmuz 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 9 Temmuz 2020. 
  2. ^ William F McDonough The composition of the Earth. quake.mit.edu, archived by the Internet Archive Wayback Machine.
  3. ^ Kaynak hatası: Geçersiz <ref> etiketi; Clayton isimli refler için metin sağlanmadı (Bkz: Kaynak gösterme)
  4. ^ a b Kaynak hatası: Geçersiz <ref> etiketi; Cardarelli 2008 p158-163 isimli refler için metin sağlanmadı (Bkz: Kaynak gösterme)
  5. ^ Greenwood and Earnshaw, pp. 217–9
  6. ^ Wade, K.; Banister, A.J. (2016). The Chemistry of Aluminium, Gallium, Indium and Thallium: Comprehensive Inorganic Chemistry. Elsevier. s. 1049. ISBN 978-1-4831-5322-3. 30 Kasım 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Haziran 2018. 
  7. ^ Palme, H.; O'Neill, Hugh St. C. (2005). "Cosmochemical Estimates of Mantle Composition" (PDF). Carlson, Richard W. (Ed.). The Mantle and Core. Elseiver. s. 14. 3 Nisan 2021 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 11 Haziran 2021. 
  8. ^ Downs, A.J. (1993). Chemistry of Aluminium, Gallium, Indium and Thallium (İngilizce). Springer Science & Business Media. ISBN 978-0-7514-0103-5. 25 Temmuz 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 14 Haziran 2017. 
  9. ^ Kotz, John C.; Treichel, Paul M.; Townsend, John (2012). Chemistry and Chemical Reactivity. Cengage Learning. s. 300. ISBN 978-1-133-42007-1. 22 Aralık 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Haziran 2018. 
  10. ^ Barthelmy, D. "Aluminum Mineral Data". Mineralogy Database. 4 Temmuz 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 9 Temmuz 2008. 
  11. ^ Chen, Z.; Huang, Chi-Yue; Zhao, Meixun; Yan, Wen; Chien, Chih-Wei; Chen, Muhong; Yang, Huaping; Machiyama, Hideaki; Lin, Saulwood (2011). "Characteristics and possible origin of native aluminum in cold seep sediments from the northeastern South China Sea". Journal of Asian Earth Sciences. 40 (1): 363-370. Bibcode:2011JAESc..40..363C. doi:10.1016/j.jseaes.2010.06.006. 
  12. ^ Guilbert, J.F.; Park, C.F. (1986). The Geology of Ore Deposits. W.H. Freeman. ss. 774-795. ISBN 978-0-7167-1456-9. 
  13. ^ United States Geological Survey (2018). "Bauxite and alumina" (PDF). Mineral Commodities Summaries. 11 Mart 2018 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 17 Haziran 2018. 
  14. ^ "Arşivlenmiş kopya". 11 Ocak 2006 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Ocak 2006. 
  15. ^ Binczewski, G.J. (1995). The Point of a Monument: A History of the Aluminum Cap of the Washington Monument. JOM, 47 (11) (1995), pp. 20-25.[1] 24 Ocak 2016 tarihinde Wayback Machine sitesinde arşivlendi.
  16. ^ Brown, T.J. (2009). World Mineral Production 2003–2007. British Geological Survey. 13 Temmuz 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 1 Aralık 2014. 
  17. ^ "USGS Minerals Information: Mineral Commodity Summaries" (PDF). minerals.usgs.gov (İngilizce). doi:10.3133/70194932. 22 Ocak 2021 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 17 Aralık 2020. 
  18. ^ Graedel, T.E. (2010). Metal stocks in Society – Scientific Synthesis (PDF). International Resource Panel. s. 17. ISBN 978-92-807-3082-1. 26 Nisan 2018 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 18 Nisan 2017. 
  19. ^ a b Hudson, L. Keith; Misra, Chanakya; Perrotta, Anthony J.; Wefers, Karl; Williams, F.S. (2005). "Aluminum Oxide". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. 
  20. ^ a b c d Kaynak hatası: Geçersiz <ref> etiketi; Ullmann isimli refler için metin sağlanmadı (Bkz: Kaynak gösterme)
  21. ^ Totten, G.E.; Mackenzie, D.S. (2003). Handbook of Aluminum. Marcel Dekker. s. 40. ISBN 978-0-8247-4843-2. 15 Haziran 2016 tarihinde kaynağından arşivlendi. 
  22. ^ Kaynak hatası: Geçersiz <ref> etiketi; Emsley2011 isimli refler için metin sağlanmadı (Bkz: Kaynak gösterme)
  23. ^ Schlesinger, Mark (2006). Aluminum Recycling. CRC Press. s. 248. ISBN 978-0-8493-9662-5. 15 Şubat 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Haziran 2018. 
  24. ^ "Benefits of Recycling". Ohio Department of Natural Resources. 24 Haziran 2003 tarihinde kaynağından arşivlendi. 
  25. ^ "Theoretical/Best Practice Energy Use in Metalcasting Operations" (PDF). 31 October 2013 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 28 October 2013. 
  26. ^ "Why are dross & saltcake a concern?". www.experts123.com. 14 Kasım 2012 tarihinde kaynağından arşivlendi. 
  27. ^ Dunster, A.M. (2005). "Added value of using new industrial waste streams as secondary aggregates in both concrete and asphalt" (PDF). Waste & Resources Action Programme. 2 Nisan 2010 tarihinde kaynağından arşivlendi. 
  28. ^ ASM International, ASM Metals HandBook Volume 02 - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 1992, p. 506-507

Dış bağlantılar değiştir

Patentler

  • US 400664 9 Kasım 2020 tarihinde Wayback Machine sitesinde arşivlendi. – Alüminyumun florürlü tuzlarından elektroliz yoluyla redüklenmesi işlemi – C. M. Hall