Pi sayısı
dairenin çevresinin çapına oranını ifade eden irrasyonel matematik sabiti
Bu maddenin veya maddenin bir bölümünün gelişebilmesi için alakalı konuda uzman kişilere gereksinim duyulmaktadır.Mayıs 2017) ( |
Bu maddedeki bilgilerin doğrulanabilmesi için ek kaynaklar gerekli. (Mayıs 2017) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin) |
Pi sayısı (π), bir dairenin çevresinin çapına bölümü ile elde edilen irrasyonel matematik sabitidir. İsmini, Yunanca περίμετρον (çevre) sözcüğünün ilk harfi olan π harfinden alır. Pi sayısı, Arşimet sabiti ve Ludolph sayısı olarak da bilinir.[1]
TarihiDüzenle
Fabrice Bellard, 2010 yılında Chudnovsky algoritması kullanarak sayının ilk 2.699.999.990.000 basamağını bulmuştur. Arşimet, 3 tam 1/7 ile 3 tam 10/71 arasında bir sayı olarak hesapladı. Mısırlılar 3,1605, Babilliler 3,1/8, Batlamyus 3,14166 olarak kullandı. İtalyan Lazzarini 3,1415926, Fibonacci ise 3,141818 ile işlem yapıyordu.[kaynak belirtilmeli]
Yaklaşık değeriDüzenle
Pi sayısının bazı yaklaşık değerleri şu şekildedir:
- Bölümler: 227, 333106, 355113, 5216316604, 10399333102, ve 24585092278256779.*[2]
- Onlu sayı sistemi : İlk yüz basamak; 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 ....[3]
- İkili sayı sistemi: 11.001001000011111101101010100010001000010110100011 ....
- Üçlü sayı sistemi: 10.010211012222010211002111110221222220111201212121 ....
- On altılı sayı sistemi:3.243F6A8885A308D31319 ....[4]
- Altmışlı sayı sistemi: 3;8,29,44,1
Pi (π) formülleriDüzenle
Pi (π) formüllerinden başlıcaları şunlardır:[kaynak belirtilmeli]
Ayrıca bakınızDüzenle
KaynakçaDüzenle
- ^ "Pi Sayısı". 9 Temmuz 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Temmuz 2015.
- ^ Eymard, Pierre; Lafon, Jean Pierre (1999). The Number Pi. American Mathematical Society. ISBN 978-0-8218-3246-2.
- ^ Arndt & Haenel 2006, s. 240
- ^ Arndt & Haenel 2006, s. 242
- ^ "The world of Pi - Newton". www.pi314.net. 13 Temmuz 2010 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Mart 2022.
- ^ "The world of Pi - Bellard". www.pi314.net. 2 Temmuz 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Mart 2022.
Dış bağlantılarDüzenle
- Pi Çılgınlığı 18 Mayıs 2012 tarihinde Wayback Machine sitesinde arşivlendi. (Türkçe)
- Pi-Different (İngilizce)
- Project Gutenberg'de π'nin detaylı değeri 1 Temmuz 2004 tarihinde Wayback Machine sitesinde arşivlendi. (İngilizce)
- Pi formülleri ve online pi hesabı 26 Mayıs 2011 tarihinde Wayback Machine sitesinde arşivlendi. (İngilizce)