Nordström çekim teorisi

Teorik fzikte, Nordstrom kütleçekim kanunu genel göreliliğin bir öncülüdür. Açıkçası, Fin’li teorik fizikçi Gunnar Nordström tarafından 1912 de ve 1913 te önerilen iki ayrı teori vardır. Bunlardan ilki, hızla geçerliliğini yitirmiş, ancak ikinci, yerçekimi etkileri kavisli uzay-zaman geometrisi bakımından tamamen kabul eden. kütleçekim metrik teorisinin bilinen ilk örneği olmuştur. Nordstrom teorilerinin hiçbiri gözlem ve deney ile uyum içinde değildir. Bununla birlikte, ilkinin kısa sürede üzerindeki ilgiyi kaybetmesi, ikinciyi de etkilemiştir. İkinciden geriye kalan, kütleçekim kendine yeten relativistik teorisi. Genel görelilik ve kütleçekim teorileri için temel taşı niteliği görevi görmektedir. Bir örnek olarak, bu teori, pedagojik tartışmalar kapsamında özellikle yararlıdır.

Teorilerin geliştirilmesiDüzenle

Nordstrom un teorisi, Helsinki Nordström, Prag'da Milan Max İbrahim, Greifswald, Almanya Gustav Mie ve Albert Einstein, gibi önde gelen ve göreli yerçekimi teorilerine rakip yaratmak için çalışan fizikçilerin bulunduğu bir ortamda ortaya çıktı. Bu araştırmacıların hepsi uygun mevcut teoriyi değiştirmeye çalışarak başladı. Bu teoriye göre, alan denklemi Poisson denklemidir  . Burada   çekim potansiyeli,   maddenin özkütlesidir ve ortam çekim alanında bir test parçacığın hareket bir denklem ile artar, Biz, Newton’un kuvvet kanunu ve hangi seviyede test parçacığının potansiyelinin eğimi olarak verilen ivmelenmesine bakarak türetebiliriz.

 

Bu teori göreceli değildir, Çünkü hareket denklemi gerçek zaman yerine koordinat zamanını işler ve bazı izole edilmiş nesneler içindeki maddeler ani bir patlama ile dağıtılabilir. Alan denkleminin, her yerde "boşluk" potansiyel anında "kendini güncellemesi" gerektirmektedir ve bu durumda ışıktan hızlı hareket edemez. Einstein'ın eski matematik profesörü Hermann Mİnkowski, 1912 yılında bir vektör teori krokisi çizdi. Abraham böyle bir teoriyi istikrarlı gezegen yörüngede kabul edeceğini belirtti ve bu da Nordström yerçekimi skalar teorilerinin dönüm noktalarından biri oldu.

Nordstrom’un ilk girişimi yerçekimine uygun göreli skalar bir alan denklemi teklif etmek oldu. Bunun için sadece Newton alan denkleminde D’Alembertian veya dalga operatörü ile Laplacian operatörünü değiştirmek yeterliydi ve elde edilen sonuç : Bu dalga denklemi Laplace denkleminden vakum alan denklemi değiştirme sonucu ortaya çıkmıştır. Bu da şu anlama gelir ki; maddenin dağıtımına ilişkin herhangi bir "haber" başka yerlere ışık hızında iletilir. Buna karşılık, deney parçacıkları hareket denklemi için, basit bir öngörü ile,burada nokta doğru zamana göre farklılık gösterir, virgül aşağıdaki indislerin koordinat endeksli kısmına göre kısmi türevi ifade eder ve   test parçacıcığının hız vektörüdür. Bu kuvvet yasası daha önce Abraham tarafından önerilmişti ve Nordstrom çalışmayacağını biliyordu, onun yerine bu formülü önerdi,  .

Bununla birlikte, bu teori, çeşitli nedenlerle için kabul edilemezdi. Edilen iki itiraz teorikti. İlk olarak, bu teorinin bir Lagrange tarafından türetilebilirliği yoktu, İkinci olarak, önerilen alan denklemi doğrusaldı. Ama elektromanyetizma ile kıyas yoluyla, biz yerçekimi alanının enerji taşımasını bekleriz ve görelilik teorisi üzerine Einstein'ın çalışmaları temelinde, Bu enerji kütlesinin eşdeğer olmasını beklemeliyiz ve bu nedenle, yerçekimi ile de.

Einsetein ve Von Laue sorunun alanı denklemi ile ilgili olabileceğini önerdi, Onlar lineer formun   şeklinde olabileceğini düşünüyorlardı. Burada F,    nun henüz bilinmeyen bir fonksiyonu,  T matter maddenin yoğunluğunu açıklayan stresenerji tensör izini temsil eder. Bu eleştirilere yanıt olarak, Nordström 1913 yılında ikinci teorisini öne sürdü. atalet ve yerçekimi kütlesi orantılılığından, alan denkleminin ,  , olması gerektiği kanısına vardı. Nordström hareket denklemi:

 

Veya

 .

Sadece madde mevcut toz bulutu olduğunda Einstein özel durum olarak Kabul edebileceğini söyledi ve O stres enerji tensörü için bu konuda katkısı olması gerektiğini savundu :

 

Daha sonra, Nordstrom ikinci teoride yerçekimi alanının stres enerji tensörü için bir ifade elde etti

Bununla birlikte gösterdi ki çekim alanı enerjisinden ve maddeden olan stres enerji tansörünün katkıları toplamı korunmuş olmalıdır. Dahası, gösterdi kl, Nordstrom ikinci teoreminin alan denklemi Lagrangian’ınkini izler:

 

ortam çekim alanında Test parçacıkları için Nordstrom denklemi de Lagrange hareket denklemini izler.Bu durum Nordstrom ikinci teorisinde bir eylem prensibi elde edilebileceğini gösterdi. Ayrıca kendi içinde tutarlı bir alan teorisi talebi için diğer özelilklerin de tutarlı olduğunu kanıtlamış oldu.

Bu arada, yetenekli bir Hollandalı öğrenci, Adriaan Fokker doktora yazmıştı ve o şimdi Fokker-Planck denklemi diye bilinen denklemi türetmişti. Eski öğrencisinin başarısı Lorentzi memnun etti ve Fokkerı doktora sonrası Prag’da Einstein ile çalışmak için davet etti.Einstein ve Fokker test parçacıkların hareketinde Nordstrom denklemi için Lagrange gözlemleyerek  , metrik tensör   ile kavisli bir Lorentz manifoldu için jeodezik Lagrange tanımını buldular. Kartezyen hat elemanlarını da buraya kabul edersek,   , düzlemsel arka planda dalga operatörüne   tekabül eder. Minkowski uzay zamanı, eğri uzay-zamanın çizgi unsurudur ve   ifade edilir. o zaman bu kavisli uzay-zamanın Ricci skaler sadece bir: : 

Bu nedenle, Nordstrom saha denklemi basitçe şu şekli alır:

 

Eşitliğin sağ tarafında, sistem enerji stres tensörünü kullanırız. Bu bir tarihi sonuçtur, çünkü sol tarafı yalnızca geometrik bir değer olan ilk alan denklemidir. Einstein neşeyle, bu denklem şimdiki hali önceki Von Laue ya teklif etmiş şeklini alması noktasına dikkat çekti.

Nordstrom teorisinin ÖzellikleriDüzenle

Einstein, sadeliği açısından Nordstrom’un ikinci teorisine dikkat çekti. Nordstrom teorisine göre vakum alan denklemleri ;

 

Biz hemen Nordstrom teorisine genel vakum çözümü yazabiliriz:

 

Burada,     ve    herhangi bir uygun koordinat grafikte düz uzay unsurlarıdır. Ve düzlem dalga operatörünü temsil eder. Ama sıradan üç boyutlu dalga denkleminin genel çözümü de bilinmektedir ve oldukça açık bir formda ifade edilebilir. Bir kuvvet serileri açısından genel bir çözüm yazabiliriz ve elektromanyetizmadan tanıdğımız Lienard-Wiechert potansiyelleri ile, Cauchy sorunları için de genel çözüme kavuşuruz.

Nordstrım'da alan denklemlerinin herhangi bir çözümünde, eğer uzay-zamanı konformal pertürasyon olarak düşünürsek, :  olduğunu görürüz.

Böylece, zayıf alan yaklaşımında, newton’un çekimsel potansiyeli ile     tanımlayabiliriz. Bu arada, gerçek bir Elektrovakum karışımı için i stres enerji tensörü izi kaybolması tensörün bir elektrovakum çözeltisi içinde olduğunu gösterir. Metrik tensör vakumlu bir çözeltisi ile aynı biçime sahiptir, böylece aşağı yazmak ve kavisli uzay-Maxwell alan denklemleri çözmek gerekir sadece. Ancak bu, konformal değişmez, bu yüzden de genel elektrikli vakum çözümü yazabiliriz. Herhangi bir Lorentz manifoldunda, hangi Nordstrım'da alan denklemlerinin bir çözüm olarak duruyor ise Riemann tensörün konformal parçası her zaman kaybolur. Ricci Skalar da herhangi bir vakum bölgesinde aynı şekilde kayboluyor. Nordstrom teorisine Riemann tensörü üzerinde başka kısıtlamaları da var mıdır? öğrenmek için, manifoldlar teorisi ile önemli bir kimlik kazanan ,Ricci ayrışmasını da unutmayınız, Bu ayrışma Riemann tensörünü üç parçaya böler:  Ricci scalar, the trace-free Ricci tensorü

 

and the Weyl tensorüdür.. Bu işlemden sonra da cebirsel ilişkiler bakımından Nordstrom’un teorisini takip eder. Ancak, iki kez sözleşmeli ve geri Bianchi kimliği dikkate alarak, herhangi bir (yarı) -Riemannian manifoldunda Riemann tensörü için de geçerlidir, bir diferansiyel kimliği Nordstrom’un teorisinde görmekteyiz.

 

Riemann tensörün yarı Traceless bölümünü kısıtlayan birinci derece differeansiyel denklemi görmekteyiz.. Böylece, Nordstrom teorisine göre, bir vakum bölgedeki Riemann tensörün sadece yarı Traceless bölümü kaybolmadan kalabilir. Sonra bizim covariant   üzerindeki diferansiyel kısıtlaması, stress enerji tensörünün izinin nasıl farklılıklar gösterdiğini gösterir. Ve bu nedenle, sıfır olmayan yarı Traceless kavisi,vakum bölgesinde yayılma gösterebilir. Bu durum büyük önem taşımaktadır, bunun nedeni; aksi halde yerçekiminden bahsedilemezdi. Genel görelilikte, birbirine benzer oluşumlar olabilir, ancak burada söz konusu vakum bölgesinden silinebillen Ricci tensörüdür ve stres-enerji tensörü tarafından varyasyonlar ile üretilen Weyl eğriliği, aynı zamanda vakum bölgesinde yayılma gösterebilen ve yerçekimi vakum yoluyla yayılma yapabilen bir uzun menzilli kuvvet etkisi oluşturma gücüne sahiptir. Nordström'ün teorisi ve genel görelilik arasındaki en temel farklar tablo haline getirilirse;

Genel Görelilik ile Nordstrom teorisinin karşılaştırılması
eğriliğin türü Nordström Einstein
  skaler elektovakumda kaybolma elektovakumda kaybolma
  iz bırakmamazlık sıfır olmayan çekimsel radyasyon elektovakumda kaybolma
  komple iz bırakmamazlık daima yok olur sıfır olmayan çekimsel radyasyon

Nordstrom teorisinin başka bir özelliği de; teori Minkowski uzay zamanının belirli bir skalar alan teorisi olarak da yazılabilir. Ve umulan çekimsel alan enerjisi ile çekimsel olmayan kütle-enerji korunum kanunu da sahiptir. Ancak hafızada kalıcı olmayan, zor ezberlenen formülleri biraz sıkıntı yaşatmaktadır. Korunum kanunun yitirdiğimizi düşündüğümüzde, hangi yorumun gerçek olduğuna nasıl karar veririz? Başka bir deyişle, Ölçülebilen metrik mi yoksa lokal metrikler mi Nodstrom’a göre ölçülebilir ve daha deneyseldir? Cevap: eğilmiş, bükülmüş uzay zamani bu teoride fiziksel olarak gözlemlenebilir. Bu noktada, yavaş hareket eden test parçacıklarının lmitini ve yine yavaşça evrilen zayıf çekimsel alanları gösterebilme imkanına sahibiz. Nordstrom’un teorisi Newton’un yerçekimi teorisini kısıtlar. Bunun detaylarına inmek yerine, bu teorinin bu durumu getirdiğii iki önemli çözümü göz önüne alacağız; küresel simetrik statik asimptotik düz vakum çözümleri - Bu teoriye genel vakum yerçekimi düzlem dalga çözümü. Bizler, ilkini Nordstrom teorsinin öngörülerini göreceli çekiim teorisinin dört klasik güneş sistemi testi öngörüsünü elde etmek için kullanacağız. İkincisini ise Einstein’in genel görerlilik teorisi ve Nordstrom’ün teorisini karşılaştırmak için kullanacağız.

Statik küresel simetrik asimptotik düz vakum çözümüDüzenle

Nordstrom teorisine statik vakum çözümleri, Lorentziyen manifoldlarının metrik formlarıyla vardır

 

Burada, uzayzaman Laplace operatörünü sağ tarafta kullanabiliriz.

 

 , Minkowski uzay-zamanının metriğidir.

MetrikDüzenle

Kutupsal küresel koordinatları benimseyen, ve Laplace denklem çözümünde görünmeyen küresel simetrik asimptotları kullanarak, istenilen kesin çözümü yazabiliriz;

 

Bu koordinatlar cinsinden, bu bilgi bize uzay-zamanın Minkowski uzay-zamanına eşit olduğu gerçeğini doğrudan gözler önüne serer ve bize çözümü verir. Bu tablodaki radyal koordinatlar, direkt olarak bir geometrik yorumu kabul etmez. Bu nedenle,   yerine Schwarzschild koordinatları kabul edersek;

 
 

Burada yapacağımız basit bir geometrik yorum; koordinat kürenin yüzey alanı   .

Statik küresel simetrik asimptotik alanın çözümünün genel göreliliğin içinde cevabının saklı olduğu gibi, bu çözüm dört boyutlu bir önceden belirlenmiş bir grubu içinde barındırır:

  (zaman içinde)
  (orijinden geçen bir eksen etrafında döndürme)
 
 

Bunlar tam olarak Schwarzschild koordinatları ile aynı vektör alanine sahiptirler.

Statik gözlemcilerDüzenle

Büyük kütleli bir nesnenin üzerinde verilen bir kütle ile birlikte bir test parçacığına ne kadar bir kuvvet uygulandığı sorusunu sormak mantıklı bir hareket olacaktır, . Bunu öğrenmek için, basit bir çerçeve alanine Kabul etmek işimizi kolaylaştıracaktır.

 
 
 
 

Sonra, test parçacığının Dünya hattı boyunca hızlandırılması basitçe:

 

Böylece, parçacık konumunu korumak için radyal olarak, büyüklüğü meşhur Newton denklemi ile belirlenen bir ivme ile dışa doğru hareket edecektir. Bir başka deyişle,, bu konumunu korumak için bir roket motoru kullanan statik bir gözlemci tarafından ölçülülen yerçekimsel ivmelenmedir. Buna karşılık olarak, m’in ikinci derecesi için, Schwarzschild vakumundaki dışarıya doğru olan ivmelenmenin büyüklüğü, static bir gözlemci için,  r−2 + m^2 r−3; olacaktır.

Statik gözlemci tarafından ölçülen gelgit tensörü;

 

Burada    olacak şekilde kullanırız. İkinci terim gösterir ki gelgitsel kuvvetler Nordstrom’da Einstein’ın yerçekiminden daha fazladır.

Periastria Ekstra Newton HassaiyetDüzenle

Daha önceki geodizik denklemlerimizde , ekvatoral koordinat düzleminde   koyduğumuzda;

 

ve burada zaman benzeri geodizik için

  elde ederiz.

Düzgün zamana göre s, farklılaştırırsak, :  elde ederiz.

Her iki tarafı  ’ye böldüğümüzde;

 

  olduğu yerde minimum V’nin   da meydana geldiğini gördük.

Türevi değerlendirerek ve daha önceki sonuçları kullanarak ve şeklinde   ayarlarak

  sonucunu elde ederiz.

Bu da basit harmonik hareketin birinci dereceden denklemidir. Başka bir deyişl, neredeyse dairesel yörüngelerin radikal bir salınım yapacağı söylenebilir. Ayrıca, Newton yerçekimindekinden farklı olarak , salınımın periyodu dairesel yörünge ile eşleşmeyecektir. Özellikle,

 

  kullandık ve  ) yi çıkardık , buna karşın

  oldu.

Aradaki fark:

 

bu nedenle periastrion lag per yörüngesi:

 

ve birinci dereceden m için , eliptik yörüngenin uzun ekseni

 

hızında hareket eder.

Bu da genel görelilikteki Schwarzschild vakum çözümü ile karşılaştırılabilir.

 

Bu nedenle Nordstrom kuramında, eğer eliptik yörüngeler saat yönünün tersine çevrildiğinde, uzun eksek neredeyse saat yönünde döner, oysa genel görelilik kuramına göre altı kat daha hızlı olacak şekilde saat yönünün tersine döner. Ilk durumda periastrion lag dan söz edebiliriz ancak ikinci de gelişmiş periastrion dan bahsederiz. Ya da teori üzerine daha çok çalışarak daha genel söylemler elde edebiliriz.

Işık GecikmesiDüzenle

Ekvatoral düzlemdeki geodizikler denklemimizde :  eşitliğini sağlar.

Boş bir geodiziğin, orjine olan en yakın noktasından öncesi ve sonrası düşünüldüğünde ve mesafeler   with   olacak şekilde alındığında   den kurtulmak isteriz. Dolayısıyla   olur. Bunun türevini aldığımızda ise  :  elde ederiz. Bu nedenle,

 

Bunu çizgi elementine yerleştirdiğimizde ve dt için çözdüğümüzde ise

 

Burada koordinat zamanının birinci olayının en yakın yaklaşımı

 

ve buna benzer bir şekilde

 

Newton yaklaşımına göre geçen koordinat zamanı :  olur.

Nordström kuramına göre görelilik gecikmesi ise : 

Küçük oranlardaki birinci derece olur ve olduğu bilindiğinden genel görelilik kuramına göre   this is just   elde edilir.

Örneğin, klasik bir deneyde, verilen herhangi bir zamanda, Dünya’dan bakıldığında, Venüs hemen Güneş’I geçmekte gibi görünürken, Dünya’dan yayılan radar ışınları Güneş ışınlarını sıyırır, Venüs’ü atlar ve Dünya’ya geri döner. Bu durumda, görelilik zaman gecikmesi Nordström kuramına göre 20 mikrosaniye iken genel göreliliğe göre 240 mikrosaniyedir.

ÖzetDüzenle

Yukarıda bulduklarımızı aşağıda tabloda özetlenebilir:

Üç Yerçekimi Teorisinin Tahminlerinin Karşılaştırılması
Newton Nordström Einstein
Test Parçacığının Hızlanması m r−2 m r−2 m r−2 + m2 r−3
Extra-Coulomb gel-Git Kuvveti 0 m2 r−4 diag(-1,1,1) 0
Dairesel Yörüngenin Yarıçapı R = L2 m −1 R = L2 m −1 R = L2 m−1 − 3 m
Yerçekimsel Kırmızı Değişim Faktörü 1 1 + m r −1 1 + m r −1
Işığın eğilme Açısı   0  
Periastria’nın hassasiyet oranı 0    
Zaman Gecikmesi 0    

Vakum çekimsel düzlemsel dalgasıDüzenle

Minkowski uzay zamanında ikili boş grafik için;

 

dalga denkleminin basit bir çözümü

  olur ve   olduğunda f rastgele bir yumuşak dalgayı temsil eder.

Bu da z yönünde hareket eden bir dalgayı temsil eder. Bu nedenle Nordström kuramı tam vakum çözümünün

  olduğunu kabul eder.

Lorentz manifoldu kabul eder ki izometrinin altı boyutlu Lie öbeği veya öldürücü vektör alanları altı boyutlu lie cebiri

  ( dalga vektörü  ) dik olan boş çeviri)
  (dalga cephesine dik olan uzaysal çeviri)
  (yayılma yönüne paralel dönme ekseni)
 

Örneğin,   olduğu killing vector alanında eş ölçümlü parametreler ailesinde aşağıdaki şekilde birleşir:

 

Genel görelilik de olduğu gibi, denklemi bozmadan koordinatları değiştimek mümkündür. Böylece dalga, ye çapraz olarak herhangi bir yönde yayılabilir. Hiper yüzeylerimiz üzerinde eşölüçümlü grubun .olduğunu not etmekte fayda var. Buna karşın, genel görelilik de beş- boyutlu Lie grup eşölçümleri bulunmaktadır. Bunun hakkında aşağıda daha fazla açıklama yaplıcaktır.

Alanda ayarlama yaparsak:

 
 
 
 

test parçacıklarının hareketsiz (serbest düşme) olduğunu görürüz. Çünkü hızlanma vektörü :  şeklinde yok olmaktadır.

Burada Minkowski uzay zamanına göre, eğer hızlanma vektörü yok olursa, ailenin ortak hareketsiz test parçaçıklarına dönüşeceğini not etmekte fayda var. Zamanbenzeri geodizik dünya çizgilerinin uyumu, zaman benzeri birim vektör alanı   integrali alınarak,

 

şeklinde elde edilir.

Bu da tam olarak enine dalga için spin-0 olarak bekleyeceğimiz bir şeydir. Test parçacıklarının benzer aileleinin davranışları genel görelilik kuramına göre oldukça farklıdır çünkü bunlar spin-2 dalgalarıdır. Bu durum ise Nordström yerçekimi kuramının skaler, Einstein’in teorisinin ise tensör teori olmasından kaynaklanır. Diğer yandan, her iki teroride de yerçekimsel dalgalar çapraz dalgalardır. Elektromanyetik dalgaların tabii ki çapraz olması beklenmektedir. Dalga tensörü:

 

şeklinde bulunur ve bu Nordström kuramına göre spin-0 özelliği sergiler.

Burada açıkladığımız kesin çözüm, düz yayılan yerçekimsel dalga olarak yorumladığımız dalga, Nordström kuramına göre yayılan yerçekimsel radyasyon hakkında bazı bilgiler vermektedir, öte yandan bu radyasyonun oluşuma dair bir bilgi vermemektedir. Bu noktada, doğal genel görelilik teorisinde doğrusallaştırılmış yerçekimi dalga standardının kütleçekim Nordstrom teorisine karşı tartışmak örneksel olacaktır. Ancak bu noktada bunu yapmayacağız.