Gamma dağılımı
Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.
Olasılık yoğunluk fonksiyonu![]() | |
Yığmalı dağılım fonksiyonu![]() | |
Parametreler | şekil (reel) ölçek (reel) |
---|---|
Destek | |
Olasılık yoğunluk fonksiyonu (OYF) | |
Birikimli dağılım fonksiyonu (YDF) | |
Ortalama | |
Medyan | basit kapalı form yok |
Mod | |
Varyans | |
Çarpıklık | |
Fazladan basıklık | |
Entropi | |
Moment üreten fonksiyon (mf) | |
Karakteristik fonksiyon |
KarakteristiklerDeğiştir
Bir rassal değişken olan Xin θ ölçek parametresi ve k şekil parametresi ile tanımlanmış bir gamma dağılımı ile ifade edilmesi için şu notasyon kullanılır:
Olasılık yoğunluk fonksiyonuDeğiştir
Gamma dağılımının olasılık yoğunluk fonksiyonu şu şekilde bir gamma fonksiyonu ile ifade edilebilir:
Bu çeşit parametrelerle ifade edilme yukarıda verilen bilgi kutusunda ve grafiklerde kullanılmıştır.
Alternatif bir şekilde, gamma dağılımının olasılık yoğunluk fonksiyonu bir şekil parametresi ile ölcek parametresinin tersi olan oran parametresi kullanılarak şöyle elde edilir:
- Eğer bir pozitif tam sayı ise, o halde
Olasılık yoğunluk fonksiyonu her iki şekli de istatistikçiler tarafından yaygın olarak kullanılmaktadır.
Yığmalı dağılım fonksiyonuDeğiştir
Yığmalı dağılım fonksiyonu bir tanzim edilmiş gamma fonksiyonudur ve bir tamamlanmamış gamma fonksiyonu şeklinde şöyle ifade edilir:
ÖzelliklerDeğiştir
ToplamaDeğiştir
Eğer i = 1, 2, ..., N için rassal değişken Xiin dağılımı bir Γ(αi, β) olursa; o halde
Ancak bütün Γ(αi, β) istatistiksel bağımsız olması gerekir.
Gamma dağılımı sonsuz bölünebilirlik özelliği gösterir.
ÖlçeklemeDeğiştir
Herhangi bir t için tX bir Γ(k, tθ) dağılımı gösterir; bu ifade θnın bir ölçek parametresi olduğunu gösterir.
Üstel ailesiDeğiştir
Gamma dağılımı iki-parametreli üstel ailesinin bir üyesidir ve doğal parametreler değerleri ve ; ve doğal istatistikleri ve olur.
Enformasyon entropisiDeğiştir
Enformasyon entropisi şöyle verilir:
burada ψ(k) bir digama fonksiyonu olur.
Kullback–Leibler ayrılımıDeğiştir
'Gerçek' dağılım olan Γ(α0, β0) ile yaklaşık fonksiyon olan Γ(α, β) arasındaki yönlendirilmiş Kullback-Leibler ayrılması şu fonksiyonla verilir:
Laplace dönüşümüDeğiştir
Gamma dağılımının Laplace dönüşümü şudur:
Parametre tahminiDeğiştir
Maksimum olabilirlilik tahminiDeğiştir
Birbirlerinden bağımsız ve aynı dağılım gösteren N sayıda gözlem , , , için olabilirlik fonksiyonu sudur:
Bundan bir log-olabilirlilik fonksiyonu türetilebiliriz:
Bunun 'ya gore maksimim değerini bulmak için bu log-olabilirlilik fonksiyonunun birinci türevini alıp sıfıra eşitlersek, θ parametresi için maksimum-olabilirlik kestirimini buluruz:
Bunu tekrara log-degisebilirlilik fonksiyonuna koyarsak, elde edilen ifade su olur:
Bunu k'ye gore maksimumunu bulmak için birinci türevini alırız ve bunu sıfıra eşitleriz. Sonuç şudur:
Burada
olup bir digamam fonksiyonudur.
k için kapali-sekilli bir çözüm bulunmamaktadır. Bu fonksiyon numerik olarak, hesaplamaya uygun davranış gösterir ve bunun için bir numerik çözüm istenirse, örneğin numerik Newton Yöntemi, sonuçlar yeterli dakik olur. Bu numerik çözümler için ilk değer ya "momentler metodu" kullanılarak bulunur ya da su yaklaşım kullanılabilir:
Eğer su ifadeyi kullanirsak
k yaklaşık şu değerdedir:
Bu genellikle gerçek değerden +/- %1,5 hatalı olabileceği bulunmuştur. Bu ilk tahminin Newton-Raphson yöntemi için iyileştirilmesi Choi ve Wette (1969) şöyle verilmiştir:
burada trigamma fonksiyonunu (yani digamma fonksiyonunun birinci türevini) ifade eder.
Digamma ve trigamma fonksiyonlarını çok dakiklikle hesaplamak güç olabilir. Fakat, su verilen yaklaşım formülleri kullanarak birkaç önemli ondalikli sayıya kadar iyi yaklaşım sayıları bulmak imkânı vardır:
ve
Ayrıntılar için bakiniz Choi ve Wette (1969).
Bayes tipi minimum ortalama-kareli hataDeğiştir
Bilinen değerde k ve bilinmeyen değerde ' , için theta için sonrasal olasılık yoğunluk fonksiyonu ( için standart ölçek-değişilmez öncel kullanarak) su elde edilir:
Su ifade verilsin
Bunun θ entegrasyonu değişkenlerin değiştirilmesi yöntemi kullanılarak mümkün olur. Bunun sonucunda 1/θ ifadesinin
parametreleri olan bir gamma dağılımı gösterdiği ortaya çıkartılır.
Momentler (m ile m = 0) orantısı alınarak hesaplanabilir:
Buna göre theta'nin sonsal dağılımının ortalama +/- standart sapma kestiriminin şöyle olur:
- +/-
Gamma dağılım gösteren rassal değişken üretimiDeğiştir
İlişkili dağılımlarDeğiştir
Özel dağılımlarDeğiştir
- , then
-->
DiğerleriDeğiştir
- Eğer X bir Γ(k, θ) dağılımı gösterirse 1/X k ve θ−1
parametreleri olan bir ters-gamma dagilimi gösterir.
KaynakçaDeğiştir
- R. V. Hogg and A. T. Craig. Introduction to Mathematical Statistics, 4th ed. New York: Macmillan, 1978. (Bak Section 3.3.)
- Eric W. Weisstein, Gamma distribution (MathWorld)
- 23 Şubat 2008 tarihinde Wayback Machine sitesinde [https://web.archive.org/web/20080223135214/http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm arşivlendi.] Engineering Statistics El Kilavuzu.
- S. C. Choi and R. Wette. (1969) Maximum Likelihood Estimation of the Parameters of the Gamma Distribution and Their Bias, Technometrics, 11(4) 683-69