Karakteristik fonksiyon

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

Burada t bir gerçel sayı, i sanal birim değer ve E beklenen değer olurlar.

Eğer FX yığmalı dağılım fonksiyonu ise, karakteristik fonksiyon Riemann-Stieltjes integrali kullanılarak şöyle ifade edilebilir:

Rassal değişken için bir olasılık yoğunluk fonksiyonu, yani fX, var ise karakteristik fonksiyonu şöyle ifade edilir:

Eğer X bir vektör-değerli rassal değişken ise, t değeri bir vektör olarak ve t.X bir nokta çarpan olarak kabul edilip tanım değiştirilmez.

R üzerinde veya Rn üzerindeki her olasılık dağılımının bir karakteristik fonksiyonu bulunur, çünkü sınırlı bir fonksiyonunun ölçümü sonsuz olan bir uzayda integrali alınmaktadır. Her bir karakteristik fonksiyonu için tek bir olasılık dağılımı vardır. (İçinde olan) bir simetrik olasılık yoğunluk fonksiyonu için karakteristik fonksiyon gerçeldir; çünkü ifadesinden elde edilen ile ifadesinden elde edilen sanal parçalar birbirini eksiltmektedir.

Lévy süreklilik teoremiDüzenle

Ters alma teoremiDüzenle

Bu özellikten daha kapsamlı bir özellik daha vardır. İki gayet iyi belirlenmiş yığmalı olasılık dağılımı, hiçbir karakteristik fonksiyonuna ortak sahip değildirler. Bir karakteristik fonksiyon, φ, verilmiş ise, karşıtlı bağlı olup çıkartıldığı yığmalı dağılım fonksiyonu F yeniden şöyle meydana getirilir:

 

Genel olarak bu bir uygunsuz integralidir; çünkü Lebesgue integrali olacağına koşullu olarak integrali çıkartılmış olan bir fonksiyonu olabilir. Yani mutlak değerinin integrali sonsuz olabilir.

Bochner-Khinchin teoremiDüzenle

Herhangi bir fonksiyon   belli bir olasılık yasası olan   karşılığı olan bir karakteristik fonksiyon olması için yalnızca ve yalnızca şu üç koşulun sağlanması gerekir:

  1.   sürekli olmalıdır.
  2.   olmalıdır.
  3.   bir kesin pozitif fonksiyon olmalıdır. (Dikkat edilirse bu koşul biraz karmaşık olup   ile eş anlamda değildir.)

Karakteristik fonksiyonların yararlarıDüzenle

Levy'nin süreklilik teoremi dolayısıyla karakteristik fonksiyonlar, merkezsel limit teoremini ispat etmek için çok defa kullanılmaktadır. Bir karakteristik fonksiyonunun kullanılmasıyla yapılan hesaplarda atılacak en becerikli adım, eldeki fonksiyonun belli bir dağılımın karakteristik fonksiyonu olduğunun farkına varmak suretiyle ortaya çıkar.

Temel özelliklerDüzenle

Bağımsız olan rassal değişkenlerin fonksiyonları ile uğraşmak için özellikle karakteristik fonksiyonlar kullanılır. Örneğin, X1, X2, ..., Xn bir seri bağımsız (ama mutlaka aynı şekilde dağılım göstermeyen) rassal değişken iseler ve ailer sabit olup

 

ise Sn için karakteristik fonksiyon şöyle verilir:

 

Özellikle

 

olur. Bunu görmek için bir karakteristik fonksiyonun tanımı yazılısın:

 .

Burada gözlenebilir ki üçüncü ve dördüncü ifadelerin eşitliğini sağlamak için gereken koşul   ve  'nin birbirinden bağımsız olmasıdır.

İlgi çekebilen bir diğer hal de,   olduğu halde  'nin örneklem ortalaması olmasıdır. Bu halde ortalama yerine   konulursa

 

olur

MomentlerDüzenle

Karakteristik fonksiyonlar, bir rassal değişkenin momentlerini bulmak için de kullanılabilir. Eğer ninci moment mevcut ise, karakteristik fonksiyonun n dereceye kadar arka arkaya türevi alınabilir ve

 

olur.

Örneğin,   bir standart Cauchy dağılımı göstersin. O halde bunun   noktasında türevinin bulunmadığını göstermek, Cauchy dağılımı için hiçbir beklenen değer olmadığını gösterir. Aynı örneğinde   tane bağımsız gözlem için örneklem ortalaması olan  in karakteristik fonksiyonu

 

olur ve bunu standart bir Cauchy dağılımı için karakteristik fonksiyon olduğu gözümlenebilir. Böylece Cauchy dağılımı için örneklem ortalaması için dağılım anakütle dağılımı ile aynı dağılım olduğu anlaşılmaktadır.

Bir karakteristik fonksiyonun logaritması bir kumulant üreten fonksiyon olur ve bu fonksiyon kumulantları bulmak için yararlıdır.

Bir örneğinDüzenle

Çoklu-değişirli karakteristik fonksiyonlarDüzenle

ÖrneğinDüzenle

Matris değerli rassal değişkenlerDüzenle

İlişkili kavramlarDüzenle

BibliyografyaDüzenle

  • Lukacs E. (1970) Characteristic Functions. Griffin, London. pp. 350
  • Bisgaard, T. M., Sasvári, Z. (2000) Characteristic Functions and Moment Sequences, Nova Science

KaynakçaDüzenle