Graf (matematik)

kenarlarla çiftler halinde bağlanmış köşeler

Matematikte graf ya da çizge, nesne çiftlerinin bir anlamda "ilişkili" olduğu bir dizi nesne kümesini belirleyen bir yapıdır. Nesneler, köşeler (ayrıca düğümler veya noktalar olarak da adlandırılır) adı verilen matematiksel soyutlamalara karşılık gelir ve ilgili düğüm çiftlerinin her birine bir kenar, ayrıt (bağlantı veya çizgi olarak da adlandırılır) adı verilir.[1] Tipik olarak bir graf, kenarları için çizgiler veya eğriler ile birleştirilen, düğümler için bir nokta veya daire kümesi olarak diyagram şeklinde gösterilir. Graflar ayrık matematikte çalışmanın amaçlarından biridir.

Altı köşeli ve yedi kenarlı bir graf.

Kenarlar yönlü veya yönsüz olabilir. Örneğin, düğümler bir partideki insanları temsil ediyorsa ve iki kişi arasında el sıkışırlarsa bir kenar varsa, o zaman bu grafik yönlendirilmez, çünkü herhangi bir A kişisi B kişisiyle ancak B ile A el sıkışırsa el sıkışabilir. Aksine, eğer bir A kişisinden bir B kişisine herhangi bir kenarı A hayranlığı B'ye karşılık gelirse, o zaman bu graf yönlendirilir, çünkü hayranlık zorunludur. İlk graf türüne yönsüz çizge, sonraki graf türüne yönlü çizge denir.

Çizgeler, graf teorisi tarafından incelenen temel konudur. "Graf" kelimesi ilk olarak bu anlamda 1878'de James Joseph Sylvester tarafından kullanılmıştır.[2][3]

Tanımlar

değiştir

Çizge teorisindeki tanımlar değişkendir. Aşağıdakiler, grafları ve ilgili matematiksel yapıları tanımlamanın daha temel yollarından bazılarıdır.

 
Üç köşeli ve üç kenarlı bir graf.

Graf (Bazen ayırt etmeye yönelik sınıflandırırken, yönsüz graf ve yönlü graf veya basit graf, katlı graf olarak adlandırılırlar) [4][5] bir çift elemandan oluşur G = (V, E), V elemanına köşe denir ve E elemanı kenarlar (bazen bağlantılar veya çizgiler) olarak adlandırılan iki kümeden (iki ayrı öğeye sahip - iki kenar ve bağlayan çizgi- kümeler) oluşan bir dizidir. Her kenar iki ucunda düğüm olacak şekilde tanımlanır.

Bir kenarın {x, y}, düğümleri olan x ve y kenarların uç noktalarıdır. Kenar x ve y'yi ileşkilendirir ve x ve y'yi birbirine bağlar. Bir düğüm herhangi bir kenara ait olmayabilir.

Bir katlı graf, aynı köşe çiftine bitişik çoklu kenarlara izin veren bir genellemedir. Bazı metinlerde katlı graflara basitçe graflar da denir. [4][6]

Yönlü çizge

değiştir
 
Üç köşeli ve dört yönlendirilmiş kenarlı yönlü bir graf (çift ok her yöndeki bir kenarı temsil eder).

Yönlü graf veya digraf, kenarların oryantasyonlu-yönlendirilmiş olduğu bir graftır.

Karışık graf

değiştir

Ağırlıklı graf

değiştir
 
On köşeli ve on iki kenarlı ağırlıklı bir grafik.

Graf çeşitleri

değiştir

Yönlendirilmiş graf

değiştir

Düzenli graf

değiştir

Tam graf

değiştir

Sonlu graf

değiştir

Bağlı graf

değiştir

İki parçalı graf

değiştir

Yol graf

değiştir

Düzlemsel graf

değiştir

Çember graf

değiştir

Çoklu ağaç

değiştir

Gelişmiş sınıflar

değiştir

Grafların özellikleri

değiştir

Örnekler

değiştir

Graf işlemleri

değiştir

Genellemeler

değiştir

Ayrıca bakınız

değiştir
  • Kavramsal graf
  • Graf (soyut veri türü)
  • Graf veritabanı
  • Graf çizimi
  • Graf teorisi konularının listesi
  • Graf teorisi yayınlarının listesi
  • Ağ teorisi
  1. ^ Trudeau, Richard J. (1993). Introduction to Graph Theory (Corrected, enlarged republication. ed.). New York: Dover Pub. s. 19. ISBN 978-0-486-67870-2. 5 Mayıs 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Ağustos 2012. A graph is an object consisting of two sets called its vertex set and its edge set. 
  2. ^ Bakınız:
  3. ^ Gross, Jonathan L.; Yellen, Jay (2004). Handbook of graph theory. CRC Press. s. 35. ISBN 978-1-58488-090-5. 
  4. ^ a b Bender & Williamson 2010.
  5. ^ Bknz: Iyanaga and Kawada, 69 J, s. 234 veya Biggs, s. 4.
  6. ^ Graham et al., p. 5.

Kaynakça

değiştir

Konuyla ilgili yayınlar

değiştir

Dış bağlantılar

değiştir