Hata marjı ya da hata payı bir anketin sonuçlarındaki rastgele örnekleme hatası miktarını ifade eden bir istatistiktir. Hata payı ne kadar büyükse, anket sonucunun yığın özelliklerini yansıtacağına duyulan güven o kadar az olmalıdır. Bir popülasyon eksik örneklenip çıktı ölçüsü pozitif varyansa sahip olduğunda, yani ölçü değiştiğinde, hata marjı pozitif olur.

Her biri %95 güven aralığına (aşağıda), hata payına (solda) ve örnek boyutuna (sağda) sahip farklı boyutlardaki anketlerin renklerle kodlanmış olasılık yoğunlukları. Her aralık, 2. çeyreklik verildiğinde, %95 güvenle gerçek değerlerin bulunabileceği aralığı yansıtır. Hata payı, güven aralığının yarısıdır (ayrıca aralığın yarıçapı). Örnek ne kadar büyükse, hata payı o kadar küçük olur. Ayrıca, örnek raporlanan 2. çeyreklikten ne kadar uzaksa, hata payı da o kadar küçük olur.

Hata marjı terimi genellikle anket dışı bağlamlarda ölçülen miktarların raporlanmasında oluşan gözlemsel hatayı belirtmek için kullanılır. Aynı zamanda konuşma dilinde, bir hedefe ulaşmada sahip olabileceğiniz alan veya esneklik miktarına atıfta bulunmak için de kullanılmaktadır. Örneğin, sporda genellikle yorumcular tarafından bir hedef, puan veya sonuca ulaşmak için ne kadar hassasiyetin gerekli olduğunu açıklarken kullanılır. Bowlingte kullanılan pinler 4,75 inç genişliğinde, top ise 8,5 inç genişliğindedir, bu nedenle bir bowling sporcusunun ikinci atışta kalan belirli bir pini düşürmek için 21,75 inç hata payı olduğu söylenebilir (örnek olarak 1 veya 5 numaralı pinler gösterilebilir, 7 ve 10 numaralı pinler hat kenarında olduklarından aynı hata marjına sahip değildir).

Konsept değiştir

Basit bir evet / hayır anketini ele alalım  ,   ile ifade edilen bir popülasyondan çekilen   adet katılımcının cevaplarının örneği   ve   verdikleri evet cevaplarının yüzdesi olsun.   sonucunun tüm   popülasyonuna uygulanacak bir anketin gerçek sonucuna, bu anketi gerçekten uygulamak zorunda kalmadan ne kadar yakın çıktığını bilmek isteriz. Varsayımsal olarak,   popülasyonundan yeni çekilen sonraki   adet katılımcının cevaplarının  ,   üzerinde normal dağılmasını bekleriz. Hata payı, bu sonuçların belirli bir yüzdesinin   den farkına ilişkin beklenilen mesafeyi tanımlar.

68-95-99.7 kuralına göre   sonuçlarının %95'inin gerçek ortalamanın   her iki tarafında yaklaşık iki standart sapma (  ) aralığına düşmesini bekleriz. Bu aralığa güven aralığı adı verilir ve yarıçap (aralığın yarısı), %95 güven düzeyine karşılık gelen hata payı olarak adlandırılır.

Genellikle   güven düzeyinde,   örnek boyutuna sahip bir popülasyonun beklenen standart sapması  ;   çeyreklik açıklığını (ayrıca, bir z-skorunu) ve   standart hatayı gösterirken

 

hata payına sahiptir.

Standart sapma ve standart hata değiştir

Normal dağılan   değerlerinin   ile değişen bir standart sapmaya sahip olmasını bekleriz. Daha küçük  , daha geniş hata payı anlamına gelir. Buna standart hata denir   .

Anket sonuçlarından biri için şu varsayılır:   ve sonraki tüm sonuçlar   birlikte bir varyansa sahiptir   .

 

  bir Bernoulli dağılımının varyansına karşılık gelir.

Farklı güven seviyelerinde maksimum hata payı değiştir

 

  güven düzeyi için ortalama ile ilgili bir güven aralığı  , yani   şeklindedir.   değerleri   olasılıkla bu aralık içine düşmelidir.  'nin kesin değerleri normal dağılımın çeyrekler açıklığı fonksiyonu ile verilir (ve 68-95-99.7 kuralına yakınsar).

 ,   için tanımsızdır, yani,   gibi   de tanımsızdır.

       
0.68 0,994457883210 0.999 3,290526731492
0.90 1,644853626951 0.9999 3,890591886413
0.95 1,959963984540 0.99999 4,417173413469
0.98 2,326347874041 0.999999 4,891638475699
0,99 2,575829303549 0,9999999 5,326723886384
0.995 2,807033768344 0,99999999 5,730728868236
0,997 2,967737925342 0,999999999 6,109410204869

  iken   olduğundan,

 şeklinde keyfi bir ayarlama ile   güven seviyesinde ve   örnek boyutunda gerçek sonuçları almadan önce bile  'nin maksimum hata payını elde etmek için  ,  , ve   değerleri hesaplanabilir. Örneğin   iken;

 
 

Ayrıca, bildirilen herhangi bir   için

 

Kaynakça değiştir

Dış bağlantılar değiştir

  • "Errors, theory of", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Weisstein, Eric W. "Margin of Error". MathWorld.