"Bose-Einstein yoğunlaşması" sayfasının sürümleri arasındaki fark

k
düzen
k (Rapsar, Bose-Einstein yoğuşması sayfasını Bose-Einstein yoğunlaşması sayfasına yönlendirme üzerinden taşıdı: güvenilir Türkçe kaynaklarda yaygın olarak kullanılan terim "yoğunlaşma")
k (düzen)
{{düzenle|Şubat 2014}}
'''Bose-Einstein yoğuşmasıyoğunlaşması''' (BEY), parçacıkları bozonlardan oluşan maddelerin en alt enerji seviyesinde yoğunlaştığı, kuantum etkilerinin gözlenebildiği [[Maddenin hali|maddenin bir halidir]] <ref>{{kitap kaynağı|soyadı1=Pethick|ad1=C.J.|başlık=Bose-Einstein Condensate in Dilute Gases|tarih=2001|yayıncı=Cambridge University Press|isbn=9780511048845|sayfa=416|basım=1}}</ref> . Bozonik atomlar için, seyreltilmiş gaz halinde [[lazer soğutması]] aracılığıyla mutlak sıfır sıcaklığına doğru inilerek (0 K veya -273,15&nbsp;°C <ref>{{cite book | title=Thermodynamics | first1=C. P. | last1=Arora | publisher=Tata McGraw-Hill | year=2001 | isbn=0-07-462014-2 |page=43 | url=http://books.google.com/books?id=w8GhW3J8RHIC}}, [http://books.google.com/books?id=w8GhW3J8RHIC&pg=PA43 Table 2.4 page 43]</ref> ye çok yakın) bu hale geçiş yani yoğunlaşma sağlanabilir. Atomların klasik gazlardan farklı olarak [[Maxwell-Boltzmann dağılımı|Maxwell-Boltzmann istatistiği]] yerine [[Bose-Einstein dağılımı|Bose-Einstein istatistiğine]] makroskobik olarak/büyük ölçekte uyması BEY'nin belirleyici özelliğidir.
 
[[Dosya:Bose Einstein condensate.png|sağ|thumb|upright=1.20|Bir gaz için hız dağılımı verileri (3 kez) rubidyum maddenin yeni bir aşamaya, Bose-Einstein yoğunlaşması ve keşif teyit atomları. Sol: sadece bir Bose-Einstein yoğunlaşması görünümünü önce. Merkezi: Sadece yoğuşuğu görünümünü sonra Sağ: sonra daha fazla buharlaşması, neredeyse saf yoğuşuk bir örnek.]]
Daha sonra yapılan deneylerin karmaşık etkileşimler ortaya çıkarmasına rağmen, maddenin bu hali ilk olarak Satyendra Nath Bose ve Albert Einstein tarafından 1924-1925 yıllarında genel olarak tahmin edildi. Bose ilk olarak Einstein`a "ışık kuanta"sının (artık foton olarak adlandırılıyor) kuantum istatistiğiyle ilgili bir makale yollamıştır. Einstein bundan etkilenir ve makaleyi İngilizce'den Almanca'ya çevirerek Zeitschrift für Physik Bose için sunar ve makale yayımlanır. (Einstein'in baskı metni bir ara kaybolduğunun düşünülmesine rağmen Leiden Üniversitesinde 2005 yılında bulunur <ref>{{Web kaynağı | url = http://www.lorentz.leidenuniv.nl/history/Einstein_archive/ | başlık = Leiden University Einstein archive | yayıncı = Lorentz.leidenuniv.nl | tarih = 27 Ekim 1920 | erişimtarihi = 23 Mart 2011 | arşivurl = http://web.archive.org/web/20150519023226/http://www.lorentz.leidenuniv.nl:80/history/Einstein_archive/ | arşivtarihi = 19 Mayıs 2015}}</ref>). Einstein daha sonra iki farklı makalede Bose `un fikirlerini madde parçacıkları konusuna genişletir <ref>{{cite book |first=Ronald W. |last=Clark |title=Einstein: The Life and Times |publisher=Avon Books |year=1971 |pages=408–409 |isbn=0-380-01159-X }}</ref>. Bose ve Einstein in çalışmaları sonucunda birbiriyle eş parçacıkların tam fırıllarının istatistiksel dağılımını tanımlayan (şimdilerde bozon olarak adlandırılan) Bose-Einstein istatistiği ile yönetilen Bose gazı kavramı ortaya çıkmıştır. . Einstein bozonik atomlarının çok düşük derecelere kadar soğumasının yeni bir madde formu oluşturarak ulaşılabilir en düşük kuantum durgusuna dönüştüğünü göstermiştir.
1938 yılında Fritz London BEC yi <sup>4</sup>He un üstün akışkanlık ve üstün iletkenlik mekanizmasıyla tasarladı <ref>{{Dergi kaynağı |first=F. |last=London |title=The λ-Phenomenon of Liquid Helium and the Bose–Einstein Degeneracy |journal=[[Nature (journal)|Nature]] |volume=141 |issue=3571 |pages=643–644 |year=1938 |doi=10.1038/141643a0 |bibcode = 1938Natur.141..643L }}</ref><ref>London, F. ''Superfluids'' Vol.I and II, (reprinted New York: Dover 1964)</ref>.
1995 yılında, ilk gaz Yoğuşmasıyoğunlaşması Eric Cornell ve Carl Wieman tarafından University of Colorado ar Boulder NIST-JILA laboratuvarında rubidyum atomu gazlarının 170 nanokelvin (nK)`e <ref>{{Web kaynağı | başlık = New State of Matter Seen Near Absolute Zero | url = http://physics.nist.gov/News/Update/950724.html | yayıncı = NIST | arşivurl = http://web.archive.org/web/20150428092623/http://physics.nist.gov:80/News/Update/950724.html | arşivtarihi = 28 Nisan 2015}}</ref> (1.7×10−7 K) soğutulmasıyla üretilmiştir. Bu başarılarıyla Cornell, Wieman ve Wolfgang Ketterle MIT'de 2001 Nobel Fizik Ödülünü almıştır<ref>{{Web kaynağı | soyadı = Levi | ad = Barbara Goss | başlık = Cornell, Ketterle, and Wieman Share Nobel Prize for Bose–Einstein Condensates | çalışma = Search & Discovery | yayıncı = Physics Today online| yıl = 2001 | url = http://www.physicstoday.org/pt/vol-54/iss-12/p14.html | erişimtarihi = 26 Ocak 2008 |arşivurl =http://web.archive.org/web/20071024134547/http://www.physicstoday.org/pt/vol-54/iss-12/p14.html |arşivtarihi = 24 Ekim 2007}}</ref>. Kasım 2010 da ilk BEC fotonu gözlemlenmiştir <ref>{{Dergi kaynağı|doi=10.1038/nature09567|title=Bose–Einstein condensation of photons in an optical microcavity|year=2010|last1=Klaers|first1=Jan|last2=Schmitt|first2=Julian|last3=Vewinger|first3=Frank|last4=Weitz|first4=Martin|journal=Nature|volume=468|issue=7323|pages=545–548|pmid=21107426|bibcode = 2010Natur.468..545K |arxiv = 1007.4088 }}</ref> . 2012 de ise BEC foton teorisi geliştirilmiştir [9][10]. [9][10]
Bu BEC ye geçiş belirgin içsel serbestlik derecesi ile etkileşmeyen parçacıklar içeren üç boyutlu üniform gazların kritik sıcaklığın altında oluşur:
:<math>T_c=\left(\frac{n}{\zeta(3/2)}\right)^{2/3}\frac{2\pi \hbar^2}{ m k_B} \approx 3.3125 \ \frac{\hbar^2 n^{2/3}}{m k_B} </math>
===Gross-Pitaevskii haricindeki modeller===
BEC’nin Gross-Pitaeyskii modeli BEC’nin belirli sınıfları için geçerli olan fiziksel bir yaklaşımdır. Yapı itibarıyla, GPE şu basitleştirmeyi kullanmaktadır: GPE, yoğun parçacıklar arasındaki etkileşimlerin iki “body” tipinden kaynaklandığını farz eder ve serbest enerjinin büyük katkısını yok sayar. Bu varsayımlar genellikle seyreltilmiş 3 boyutlu yoğuşuklar için uygundur. Eğer bu varsayımlardan biri olmazsa, yoğuşuk dalga fonksiyonu (wavefunction) yüksek dereceli terimler içerir. Hatta bazı fiziksel sistemler için terim miktarı sonsuza kadar gider ve denklem polinom olmaz. Bu durumun meydana geldiği örnekler: Bose-Fermi birleşik yoğuşuklar, etkili düşük boyutlu yoğuşuklar, yoğun yoğuşuklar ve süper akışkan/süper sıvı (mutlak sıfırın bir derece üstündeki sıvı hali) kabuklar ve damlacıklar.
Keşif 1938 yılında, Pyotr Kapitsa, John Allen ve Don Misener, süper akışkan olarak bilinen ve 2.17 Kelvin’den düşük sıcaklıktaki helium-4’ü keşfettiler. Süper akışkan helium, sıfır adalılık ve sayısal girdap (quantized vortices) gibi olağan dışı birçok özellik içerir. Öncelikle, süper akışkanlığın sıvının kısmi Bose-Einstein yoğunluğundan dolayı olduğuna inanıldı. Aslında süper akışkan helyumun çoğu özelliği Cornell, Wieman ve Ketterle tarafından oluşturulan gazlı Bose-Einstein yoğuşuklarında görülmektedir. Süper akışkan helium-4 gazdan ziyade sıvıdır. Yani atomlar arasındaki etkileşimler göreceli olarak güçlüdür: Bose-Einstein’ının yoğuşmayoğunlaşma teorisi Süper akışkan helium-4’ü tanımlamak için ciddi şekilde değiştirilmelidir. Ayrıca bozon yerine fermiyum içeren helium-3, düşük sıcaklıkta süper akışkan hale geçer. Bu durum 2 atomlu bozonik “Cooper çifti” biçimlenme ile açıklanabilir.
İlk saf Bose-Einstein yoğuşuğu 5 Haziran 1995 yılında Eric Cornell, Carl Wieman ve JILA daki meslektaşları tarafından oluşturuldu. Bu çalışmayı lazer soğutucu ve manyetik buharlaşmalı soğutucu kullanarak, 170 NK dan düşük yaklaşık 2 bin rubidiım-87 atomu içeren seyreltilmiş buharı soğutarak yapmışlardır. 4 ay sonra MİT’ten Wolfgang Ketterle sodium-23 den yapılmış bir yoğuşkanı oluşturdu. Ketterle’nin yoğuşkanı yaklaşık 100 kat daha fazla atom içerir. Bu durum ona 2 farklı yoğuşmayoğunlaşma arasında kuantum mekanik etkileşiminin gözlemlenmesi gibi önemli sonuçlar sağlar. Cornell, Wieman ve Ketterle başarıları için 2001 yılında Nobel Fizik Ödülü’nü kazanmışlardır. JILA çalışmasından bir ay sonra Rice Üniversitesinde, Randall Hulet önderliğindeki bir grup Lithium atomlarının yoğuşuğu oluşturduklarını duyurmuşlardır. Lithium, yoğuşuğu duraksız olmasına ve atomların çarpışmasına neden olan ilginç etkileşimler göstermektedir. Hulet ve meslektaşları, bir sonraki denemede yoğuşuğu yaklaşık 1000 atoma kadar kuantum basıncı ile dengelenebileceğini göstermiştir.
Bose-Einstein Yoğusmasıyoğunlaşması ayrıca katılarda “quasiparticle” lara uygulanabilir. Antiferromagnetteki bir magnon “dönme 1” taşır ve Bose-Einstein statiğine uyar. Magnonların yoğunlukları, dış manyetik alanı tarafından kontrol edilir. Bu teknik, Bose sıvısıyla güçlü bir etkileşime giren seyreltilmiş Bose gazından geniş aralıkta bozon yoğunluklarına ulaşabilmeyi sağlar. YoğuşmaYoğunlaşma noktasında gözlemlenen manyetik sıralanma süper akışkanlık analoğudur. 1999 da magnonların Bose Yoğusmasıyoğunlaşması antiferromagnet Tl Cu Cl3 içerisinde gösterilmiştir. YoğuşmaYoğunlaşma 14 K kadar yüksek sıcaklıklarda gözlenmiştir. Yüksek sıcaklığa geçişin nedeni magnonların daha yüksek yoğunlukta ve daha küçük kütlede olmasıdır. 2006 yılında, ferromagnetlerdeki magnonların yoğuşmasıyoğunlaşması oda sıcaklığında gösterilmiştir.
==Hız Dağılımı Grafiği==
Bu makaleye eşlik eden figürde, hız dağılım bilgisi gaz halindeki rubidyum atomlarının Bose-Einstein yoğuşuğu oluşturmasını işaret eder. Sahte renkler her hızdaki atomların sayılarını belirtir (kırmızı en az sayıda, beyaz en çok sayıda). Beyaz ve açık mavi renkleriyle görülen alanlar en düşük hızları temsil eder. Zirve Heisenberg belirsizlik prensibinden dolayı sonsuz değildir; Atomlar boşlukta belirli bir alanda sıkışmadığı sürece hız dağılımları belirli bir minimum genişliktedir. Bu genişlik manyetik sıkışma potansiyelin eğriliği tarafından belirlenir. Daha sıkıca kapatılmış yönler daha büyük genişlikte hız dağılımlarına sahiptir. Bu anizotropinin sağdaki zirvesi saf kuantum-mekaniği etkisidir ve soldaki normal dağılımda bulunmaz. Bu grafik 1999 da Ralph Baierlein tarafından yazılan Thermal Physics [24] kitabının kapağında kullanılmıştır.
Bu denklemde <math>\ell</math> tekli yüklenen girdaptan büyüktür ve bu çoklu yüklenen girdapların bozunmaya dayanıksız olduğunu gösterir. Bu çalışma ayrıca metastabl durumlarda daha uzun yaşam süresi olduğunu da gösterdi. BEC’lerde girdap oluşumunu, tek yönlü koyu solitonların oluşumu ile yakından ilişkilidir. Bu topolojik objeler düğüm yüzeylerde faz yöntü türevi belirtir ve bu da şeklini yayılma ve etkileşimde korumasını sağlar. Solüsyonlar hiç yük taşımasa veya çürümeye meyilli olsa bile, nispeten uzun ömürlü koyu solutanlar üretilmiş ve yoğun olarak çalışılmıştır.
===Çekici Etkileşimler===
1995-2000 yılları arasında Rice Üniversitesi'nde Randall Hulet liderliğindeki deneyler, çekici etkileşimler ile lityum yoğuşukların sadece belirli bir kritik atom numarasına kadar sabit var olabileceğini gösterdi. Bu kritik katsayının ötesinde, çekimin maksimum olduğu sıfır noktasındaki harmonik hapsolmuş potansiyel enerji, süpernova patlamasını anımsatan yoğuşmuş enerjinin patlamasıyla çökmelere neden olur. Lityum atomlarının su ile soğutulmuş gazlarından, birinci yoğuşmayoğunlaşma büyümesi gözlemlenmiştir ve kritik atom numarasının aşılmasıyla da ani bir çöküş görülmüştür.
Cornell, Wieman ve çalışma arkadaşlarının oluşturduğu JILA takımı 2000 yılında çekim yoğuşmalarıyoğunlaşmaları ile ilgili daha ileri bilgiye ulaşmışlardır. Orijinal olarak anisotop (atomları birbirini iten) rubidyum 87 atomunu daha sabit yoğuşmayoğunlaşma oluşturmak için kullanmışlardır. Cornell ve arkadaşları yaptıkları çalışmaları daha da ilerleterek doğal çekim atomlarından diğer bir rubidyum izotopu olan ribidium-85 ile çalımalar yapmıştır (negatif atom ve atom dağılım uzunlukları). Karakteristikleri azaltan, Rb-85 atomlarını itici ve sabit yoğuşmalıyoğunlaşmalı bir hale getiren moleküllerin rubidyum atomları ile bağladığı zamanlardaki kesintili enerjilerinin, döngüsel çevrimli çarpışmalara neden olan manyetik alan yayılımı içeren Prosese Feshbach Rezonansı denir. Çekimden itime doğru olan tersine çevrimden dalga gibi hareket eden yoğuşmayoğunlaşma atomları arasındaki kuantum girişimini engellemektedir.
 
JILA takımı manyetik alan kuvvetini arttırdığında yoğuşmayoğunlaşma tekrar ilgi çekmeye, genişlemeye ve büzülmeye başlar ve daha sonra 10,000 kadar atomlarının yaklaşık üçte ikisini kovarak patlar. YoğuşmasınınYoğunlaşmasının içindeki atomların yaklaşık yarısı yapılan deneylerden dolayı kaybolmuş olarak görülürken soğuk kalıntısı veya genişleyen gaz bulutu görülmez. Carl Wieman mevcut atom teorisi altında Bose-Einstein yoğunlaşması açıklayamadı çünkü mutlak sıfıra yakın bir atomun enerjisi durumu iç patlama için yeterli değildir. Bu yüzden sonraki alan teorilerinde bunu açıklamayı hedeflemiştir. Kaybolan atomlar neredeyse hala başka şekillerde varlığını sürdürüyor ama ancak deneylerle gözlemlenebiliyor. Büyük olasılıkla onlar iki bağlanmış rubidyum atomlardan oluşan molekülleri oluşturdu ve bu geçişi yaparak kazanılan enerji onların tespit edilmeden kaçmaları için yeterli bir hız kazandırdı.
 
===Güncel araştırmalar===
Maddenin daha sık karşılaşılan durumlara kıyasla, Bose-Einstein yoğuşmalarıyoğunlaşmaları son derece kırılgandır. Dış dünya ile en ufak bir etkileşim onların ilginç özelliklerini ortadan kaldırılmasına ve normal oluşturan gazların yoğunlaşma eşiği geçmesine neden olur ve bu onları ısıtmak için yeterli olur.
 
Yine de, temel fizik soruları geniş bir yelpazede keşfetmenin yararları kanıtlanmış ve JILA ve MİT gruplar tarafından yapılan ilk keşifler sayesinde deneysel ve teorik faaliyet patlamalarını gördük. Örnekler ikiliği-parçacığa dalga nedeniyle yoğuşukların arasındaki girişimi gösteren deneylerini içerir, süper akışkanlık ve belirli dereceye kadar enerji içeren girdapların, tek boyutla sınırlı Bose yoğuşuklarında gelen aydınlık dalga solitonların oluşturulmasına ve ışık bakliyat yavaşlamasının elektromanyetik kaynaklı şeffaflık kullanılarak düşük hızları ölçmesine olanak sağlar. Uzmanlar "optik menfezler" ile örtüşen lazerlerden gelen girişim deseniyle yoğuşuk için bir periyodik potansiyel sağlamaktadır. Bunlar süper iletkende ve bir Mott yalıtıcı arasındaki geçişi araştırmak ve Örnek Tonks-Girardeau gaz için, daha az üç boyutta Bose-Einstein yoğunlaşma incelenmesinde yararlı olarak kullanılmıştır.
Bose Einstein yoğuşmasıyoğunlaşması üretilen geniş aralıklı izotoplardan oluşur.
İlk moleküler Bose-Einstein yoğuşmasıyoğunlaşması MIT'de Innsbruck Üniversitesinde ve Boulder Colorado Üniversitesi'nde Deborah S. Jin ve Wolfgang Ketterle Rudolf Grimm grupları tarafından 2003 yılının Kasım ayında kuruldu. Jin-Cooper çiftinden oluşan ilk fermiyonik BEC oluşturmak için hızla gitti.
1999 yılında, Danimarkalı fizikçi Lene Hau yaklaşık 17 saniyede metre başına bir ışık demetini yavaşlatmayı başardı ve Harvard Üniversitesi'nden bir ekip açtı. Bunu süper akışkan kullanarak elde etmeyi başardı. Hau ve o Harvard Üniversitesi’nde bulunan ortaklarıyla başarılı bir "ışık darbe" yoğuşukları atom grubunu geri tepme yaptırabilmişlerdir.
===İzotoplar===