Rossby sayısı (Ro), Carl-Gustav Arvid Rossby'nin adıyla anılan ve akışkanlar dinamiğinde kullanılan bir boyutsuz sayıdır. Rossby sayısı, ataletsel kuvvetin Coriolis kuvvetine oranını ifade eder; bu, Navier-Stokes denklemlerinde sırasıyla ve terimleri ile belirtilir.[1][2] Bu sayı, jeofiziksel olaylarda, özellikle okyanuslar ve atmosferde yaygın olarak kullanılır ve gezegen dönmesinden kaynaklanan Coriolis ivmelenmelerinin önemini belirler. Bu sayı aynı zamanda Kibel sayısı olarak da bilinmektedir.[3]

Düşük basınçlı bir fırtına etrafındaki Rossby Sayısı değeri ve ilişkili dengeli akışlar.

Rossby sayısı (Ro, Ro değil) şu şekilde tanımlanır:

burada U ve L sırasıyla olayın karakteristik hız ve uzunluk ölçekleridir, ve Coriolis frekansı olarak adlandırılır; burada gezegen dönmesinin açısal frekansını, ise enlemi ifade eder.

Küçük bir Rossby sayısı, Coriolis kuvvetlerinin güçlü bir şekilde etkilediği bir sistemi belirtirken, büyük bir Rossby sayısı, ataletsel ve santrifüj kuvvetlerinin hakim olduğu bir sistemi ifade eder. Örneğin, hortumlarda Rossby sayısı büyüktür (≈ 103), alçak basınç sisteminde düşüktür (≈ 0.1–1) ve okyanus sistemlerinde birlik mertebesindedir, ancak fenomenlere bağlı olarak birkaç büyüklük mertebesi aralığında değişebilir (≈ 10−2–102).[4] Bu nedenle, hortumlarda Coriolis kuvveti ihmal edilebilir ve denge basınç ve santrifüj kuvvetleri arasındadır (siklostrofik denge olarak adlandırılır).[5][6] Siklostrofik denge, aynı zamanda tropikal siklonların iç çekirdeğinde de yaygın olarak görülür.[7] Alçak basınç sistemlerinde santrifüj kuvveti ihmal edilebilir ve denge Coriolis ve basınç kuvvetleri arasındadır (jeostrofik denge olarak adlandırılır). Okyanuslarda ise üç kuvvet de karşılaştırılabilir büyüklüktedir (siklojeostrofik denge olarak adlandırılır).[6] Atmosfer ve okyanuslardaki hareketlerin mekansal ve zamansal ölçeklerini gösteren bir şekil için Kantha ve Clayson'a bakınız.[8]

Rossby sayısı büyük olduğunda (ya f küçük olduğunda, örneğin tropik bölgelerde ve daha düşük enlemlerde; ya da L küçük olduğunda, yani küvetteki akış gibi küçük ölçekli hareketler için; veya yüksek hızlar için), gezegen dönmesinin etkileri önemsiz hale gelir ve ihmal edilebilir. Rossby sayısı küçük olduğunda ise, gezegen dönüşünün etkileri belirgin hale gelir ve net ivmelenme nispeten küçük olur, bu da jeostrofik yaklaşımı kullanmayı mümkün kılar.[9]

Ayrıca bakınız

değiştir

Kaynakça

değiştir
  1. ^ M. B. Abbott & W. Alan Price (1994). Coastal, Estuarial, and Harbour Engineers' Reference Book. Taylor & Francis. s. 16. ISBN 0-419-15430-2. 
  2. ^ Pronab K Banerjee (2004). Oceanography for beginners. Mumbai, India: Allied Publishers Pvt. Ltd. s. 98. ISBN 81-7764-653-2. 
  3. ^ B. M. Boubnov, G. S. Golitsyn (1995). Convection in Rotating Fluids. Springer. s. 8. ISBN 0-7923-3371-3. 
  4. ^ Lakshmi H. Kantha & Carol Anne Clayson (2000). Numerical Models of Oceans and Oceanic Processes. Academic Press. s. 56 (Table 1.5.1). ISBN 0-12-434068-7. 
  5. ^ James R. Holton (2004). An Introduction to Dynamic Meteorology. Academic Press. s. 64. ISBN 0-12-354015-1. 
  6. ^ a b Lakshmi H. Kantha & Carol Anne Clayson (2000). Numerical Models of Oceans and Oceanic Processes. Elsevier. s. 103. ISBN 0-12-434068-7. 
  7. ^ John A. Adam (2003). Mathematics in Nature: Modeling Patterns in the Natural World. Princeton University Press. s. 135. ISBN 0-691-11429-3. 
  8. ^ Lakshmi H. Kantha & Carol Anne Clayson (2000). Numerical Models of Oceans and Oceanic Processes. Elsevier. s. 55 (Figure 1.5.1). ISBN 0-12-434068-7. 
  9. ^ Roger Graham Barry & Richard J. Chorley (2003). Atmosphere, Weather and Climate. Routledge. s. 115. ISBN 0-415-27171-1. 

Diğer okumalar

değiştir

For more on numerical analysis and the role of the Rossby number, see:

For an historical account of Rossby's reception in the United States, see