Lazer İnterferometre Kütle Çekim Dalga Gözlemevi (LIGO) (Laser Interferometer Gravitational-Wave Observatory) geniş çaplı bir fizik deneyi olduğu gibi aynı zamanda kütleçekim dalgalarını inceleyen gözlem evidir. Bu gözlem evi, farklı üniversite ve kolejlerden katılan bilim insanlarının bulunduğu ortak bir projedir. LIGO Scientific Collaboration tarafından organize edilen bu projeye dünya çapında 900 bilim adamı katılmıştır ve kütleçekim dalga astronomisi için data analizi yapmaktadır, ayrıca 44.000 kadar aktif Einstein@home kullanıcıları bulunmaktadır. LIGO Ulusal Bilim Vakfı (NSF) tarafından finanse edilmektedir, ayrıca Bilim ve Teknoloji Tesisleri Konseyi, Almanya'nın Max Planck Kurumu ve Avustralya Araştırma Konseyi önemli katkılarda bulunmaktadır. LIGO NFS'in en büyük ve en iddialı projesidir. 

TarihçeDüzenle

LIGO kavramı başlangıçta birçok bilim insanı tarafından Albert Einstein'ın relativite teorisinin bileşenlerini ve kütleçekim dalgalarını test etmek üzere kurulmuştur. Joseph Weber'i içeren Amerikan bilim insanları ve Mikhail Gertsenshtein ve Vledislav Pustovoit'i de içeren Sovyet bilim insanları 1960'lı yılların başında lazer interferometre prototiplerini ve temel fikri tasarladı.[1][2] 1967'de MIT'den Rainer Weiss interferometre kullanım analizini yayınladı ve askeri finansman ile bir prototipin yapımına başladı, ancak işlemsel hala gelemeden önce sonlandırıldı.[3] 1968lerin başlangıcında, Kip Thorne kütleçekimi dalgaları ve Caltechdeki kaynakları üzerine teorik çalışmalara başlamıştır ve sonunda kütleçekimi dalga algılamasının başarılı olacağına ikna edildi.[1]

Prototip İnterferometrik kütleçekimi dalga detektörleri (interferometreler) Robert L. Forward ve ve Hughes Araştırma Laboratuvarlarındaki arkadaşları tarafından (serbest sallanandan ziyade titreşim izole plaka üzerine monte edilen aynalar ile) 1960'ların sonlarında inşa edildi. 1970'lerde MIT'de Weiss tarafından, Heinz Billing ve arkadaşları tarafından Garching, Almanya'da ve sonrasında Ronal Drever, James Hough ve arkadaşları tarafından Glasgow, Scotland'da inşa edildi. [4]

1980 yılında, NSF, MIT (Paul Linsay Peter Saulson, Rainer Weiss) önderliğinde büyük bir interferometre çalışmasını destekledi, takip eden yıllarda Caltech(Ronald Drever ve Stan Whitcomb) 40 metre prototipini inşa etmiştir. MIT araştırma 1 km ölçekte yeterli duyarlılıkta interferometer fizibilitesini kurdu.  [1][5]

NFS baskısı altında, MIT araştırma ve Caltech, MIT, Glasgow ve Garching'deki deneysel çalışmalara dayalı olarak MIT ve Caltech'in güçlerini LIGO projesine önderlik etmek için birleştirmesi istendi. 1984 ve 1985'te finansman için geri çevrilmelerine rağmen, Drever, Thorne ve Weiss LIGO yönlendirme komitesi kurmuştur. 1986'ya kadar yönlendirme komitesinin dağıtılması istendi ve tek direktör,Rochus E.Vogt, atandı. 1988'de bir araştırma ve geliştirme fonu elde etti.  [1][5][6][7][8][9]

1989'dan 1994'e kadar, LİGO teknik ve örgütsel ilerleme açısından başarısız oldu. Sadece finansman elde etmek için siyasi çabalar sürdürülmüştür.[1][10] , ABD Kongresinin ilk yıl için 23 milyon$ fon sağlamayı kabul etmesi üzerine, 1991 yılına kadar devam eden finansman düzenli olarak reddedildi. Ancak, fon alabilmek için gerekliliklerinin yerine getirilmiş veya onaylanmış değildi ve NFS projenin organizasyonel ve teknolojik temelini sorguladı.[6][7] 1992 de,  Drever 'ın artık doğrudan katılımcı olmasıyla birlikte yeniden yapılandırıldı.[1][10][11][12] Projenin NFS incelemelerinde, devam eden proje yönetimi konusunda ve teknikte sıkıntılar görülmüştür. Resmi olarak 1993'te  harcamalarını dondurulç dek finansman bloke edildi.  [1][10][13][14]

1994'te, NFS çalışanları, LIGO bilimsel liderleri ve MIT ve Caltech başkanları arasındaki görüşmeden sonra, Vogt görevinden istifa etti ve Barry Barish (Caltech) Laboratuvarı müdürü olarak atandı.[1][11][15] . NFS LIGO'nun son bir sanşı olduğunu açıkça belirtti. [10] Barish takımı %40 oranında bir önceki teklifleri aşan bütçe ile yeni bir çalışma, bütçe ve proje planı hazırladı. Barish, NSF ve Ulusal Bilim Kurulu'na ilk kez LIGO ile kütleçekimsel dalgaların tespitinin mümkün olacağı evrimsel bir detektör inşa etmeyi önerdi. Bu detektör LIGO'nun gelişmesiyle mümkündü. [16] Bu yeni teklif NFS fonu aldı, Barish Baş Araştırmacı olarak atandı ve artış onaylandı. 1994'te, 395 milyon USD ile LIGO NFS tarihinin en büyük genel finanse projesi konumuna geldi. Proje Hanford'da, ve 1994 yılı sonlarında Livingston Washington'da, 1995 yılında Louisiana'da bir çoğır açtı.1997'de inşanın tamamlanmasına yakın, LIGO Laboratuvar ve LIGO Bİlimsel İşbirliği(LSC) olmak üzere iki organizasyonel kurum Barish liderliği altında oluşmuştur. LIGO Laboratuvarı  LIGO Çalışma ve İleri Ar-Ge altındaki NSF tarafından destekelenen tesislerden oluşmaktadır. Bu LIGO detektör yönetimini ve test tesislerini kapsamaktadır. LIGO Bilimsel İşbirliği LIGO teknik ve bilimsel araştırmaları düzenleyen bir forumdur, kendi gözetimiyle LIGO Laboratuvarından ayrı bir kuruluştur. Barish bu bilimsel işbirliği için ilk sözcü olarak Weiss'i atadı.[1][6]

Başlangıçta LIGO faaliyetleri 2002 ve 2010 yılları arasında  herhangi bir kütleçekim dalgalarını tespit etmedi. 2004 yılında, Barish önderliğinde, LIGO gelişiminin bir sonraki evresi için finansman ve temel zemini hazırlanmıştır ("Geliştirilmiş LIGO" olarak adlandırılır). Dedektörler çok gelişmiş "Gelişmiş LIGO" sürümlerle değiştirilirken bunu birkaç yıl devreden çıkarılması izledi. [17] LIGO / LIGO makineleri için araştırma ve geliştirme çalışmalarının büyük bir kısmı Hannover, Almanya'da GEO600 dedektörü için öncü çalışmalara dayanmaktadır.[18][19][20][21] Şubat 2015 itibarıyla, dedektörler her iki konumda da mühendislik moduna getirildi.

2015 itibarıyla, eylül ayı ortalarında "Dünyanın en büyük kütleçekimi dalga tesisi " toplam 620.000.000 $ maliyetle 5 yıllık US $ 200 milyon bir revizyon ile tamamlandı.[22][23] 18 Eylül 2015 tarihinde, Gelişmiş LIGO, başlangıçtaki LIGO interferometrelerdan yaklaşık dört kat daha hassaslıkta ilk resmi bilim gözlemlerine başladı. 2021 civarında tasarım duyarlılığını erişene kadar duyarlılığı daha da gelişmiş olacak.[24][25]

11 Şubat 2016 tarihinde, LIGO Bilimsel İşbirliği ve Virgo İşbirliği, kütleçekim dalgalarının algılanması hakkında bir bildiri yayınladı. Dünya'dan yaklaşık 1,3 milyar ışık yılı uzaklıkta iki  ~ 30 güneş kütleli kara deliğin Eylül 2015 14 09.51 UTC' de birleşmesine dair sinyaller algılandı.  [26][27]

İdari direktör emekli Barry Barish (Caltech) bulguların ilk bilimsel bildirisini CERN'deki fizik topluluğuna sunarken, güncel idari direktör David Reitze (Teknoloji ve Florida Üniversitesi California Institute of) Washington Washington'da bir medya etkinliğinde bulgularını açıkladı.[28]

2 Mayıs 2016 günü, LIGO Bilimsel İşbirliği üyelerine ve diğer katılımcılara yerçekimsel dalgaların doğrudan saptanması katkılarından ötürü Special Breakthrough Prize in Fundamental Physics  verildi.[29]

Ayrıca bakınızDüzenle

NotlarDüzenle

  1. ^ a b c d e f g h i Committee on Setting Priorities for NSF-Sponsored Large Research Facility Projects, Committee on Science, Engineering, and Public Policy, Policy and Global Affairs, Board on Physics and Astronomy, Division on Engineering and Physical Sciences, National Research Council. (2004). Setting Priorities for Large Research Facility Projects Supported by the National Science Foundation. National Academies Press. s. 109-117. ISBN 0-309-09084-9. 
  2. ^ Gertsenshtein, M.E. (1962). "Wave Resonance of Light and Gravitational Waves". Journal of Experimental and Theoretical Physics. Cilt 14. s. 84. 
  3. ^ Weiss, Rainer (1972). "Electromagnetically coupled broadband gravitational wave antenna". Quarterly Progress Report of the Research Laboratory of Electronics. 105 (54). MIT. s. 84. Erişim tarihi: 21 Şubat 2016. 
  4. ^ "A brief history of LIGO" (PDF). ligo.caltech.edu. 4 Mart 2016 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 21 Şubat 2016. 
  5. ^ a b Buderi, Robert (19 Eylül 1988). "Going after gravity: How a high-risk project got funded". The Scientist. 2 (17). s. 1. Erişim tarihi: 18 Şubat 2016. 
  6. ^ a b c Mervis, Jeffery. "Funding of two science labs receives pork barrel vs beer peer review debate". The Scientist. 5 (23). Erişim tarihi: 21 Şubat 2016. 
  7. ^ a b Waldrop, M. Mitchell (7 Eylül 1990). "Of politics, pulsars, death spirals – and LIGO". Science. Cilt 249. ss. 1106-1108. Bibcode:1990Sci...249.1106W. doi:10.1126/science.249.4973.1106. Erişim tarihi: 21 Şubat 2016. 
  8. ^ "Gravitational waves detected 100 years after Einstein's prediction" (PDF). LIGO. 11 Şubat 2016. 3 Nisan 2016 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 11 Şubat 2016. 
  9. ^ Irion, Robert (21 Nisan 2000). "LIGO's mission of gravity". Science. Cilt 288. ss. 420-423. Erişim tarihi: 21 Şubat 2016. 
  10. ^ a b c d "Interview with Barry Barish" (PDF). Shirley Cohen. Caltech. 1998. 23 Eylül 2015 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 21 Şubat 2016. 
  11. ^ a b Cook, Victor (21 Eylül 2001). "NSF Management and Oversight of LIGO". Large Facility Projects Best Practices Workshop (NSF). 
  12. ^ Travis, John (18 Şubat 2016). "LIGO: A $250 million gamble". Science. Erişim tarihi: 18 Şubat 2016. 
  13. ^ Anderson, Christopher (11 Mart 1994). "LIGO director out in shakeup". Science. 263 (5152). s. 1366. Erişim tarihi: 21 Şubat 2016. 
  14. ^ Brown, Malcom W. (30 Nisan 1991). "Experts clash over project to detect gravity wave". New York Times. Erişim tarihi: 21 Şubat 2016. 
  15. ^ Anderson, Christopher (11 Mart 1994). "LIGO director out in shakeup". Science. 263 (5152). s. 1366. Erişim tarihi: 18 Şubat 2016. 
  16. ^ Witze, Alexandra (16 Temmuz 2014), Physics: Wave of the future, Nature News, erişim tarihi: 2 Mart 2016 
  17. ^ "Gravitational wave detection a step closer with Advanced LIGO". SPIE Newsroom. 6 Nisan 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Ocak 2016. 
  18. ^ Ghosh, Pallab (11 Şubat 2016). "Einstein's gravitational waves 'seen' from black holes". BBC News. Erişim tarihi: 18 Şubat 2016. 
  19. ^ Gravitational waves detected 100 years after Einstein's prediction.
  20. ^ GEO's contributions to aLIGO.
  21. ^ "LIGO Hanford's H1 Achieves Two-Hour Full Lock". Şubat 2015. 5 Mart 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Mayıs 2016. 
  22. ^ Castelvecchi, Davide (15 Eylül 2015), Hunt for gravitational waves to resume after massive upgrade: LIGO experiment now has better chance of detecting ripples in space-time, Nature News, erişim tarihi: 12 Ocak 2016 
  23. ^ Zhang, Sarah (15 Eylül 2015). "The Long Search for Elusive Ripples in Spacetime". 4 Mayıs 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Mayıs 2016. 
  24. ^ Amos, Jonathan (19 Eylül 2015). "Advanced Ligo: Labs 'open their ears' to the cosmos". BBC News. Erişim tarihi: 19 Eylül 2015. 
  25. ^ "Planning for a bright tomorrow: prospects for gravitational-wave astronomy with Advanced LIGO and Advanced Virgo". LIGO Scientific Collaboration. 23 Aralık 2015. 23 Nisan 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 31 Aralık 2015. 
  26. ^ LIGO Scientific Collaboration and Virgo Collaboration, B. P. Abbott (11 Şubat 2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letter 116, 061102 (2016). arXiv:1602.03837 $2. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. Erişim tarihi: 11 Şubat 2016. 
  27. ^ Castelvecchi, Davide; Witze, Witze (11 February 2016). Kaynak hatası: Geçersiz <ref> etiketi: "Nature_11Feb16" adı farklı içerikte birden fazla tanımlanmış (Bkz: Kaynak gösterme) Kaynak hatası: Geçersiz <ref> etiketi: "Nature_11Feb16" adı farklı içerikte birden fazla tanımlanmış (Bkz: Kaynak gösterme)
  28. ^ https://cds.cern.ch/record/2131411
  29. ^ "Fundamental Physics Prize - News". Fundamental Physics Prize (2016). 7 Mayıs 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Mayıs 2016. 
Kaynak hatası: <references> üzerinde tanımlanan "PRL-20160211" adındaki <ref> etiketi önceki metinde kullanılmıyor. (Bkz: Kaynak gösterme)

Ek kaynaklar Düzenle

  • Barish, Barry C. (2000). "The Science and Detection of Gravitational Waves" (PDF). 
  • Bartusiak, Marcia (2000). Einstein's unfinished symphony : listening to the sounds of space-time. Washington, D.C: Joseph Henry Press. ISBN 0-425-18620-2. 
  • Saulson, Peter (1994). Fundamentals of interferometric gravitational wave detectors. Singapore River Edge, N.J: World Scientific. ISBN 981-02-1820-6. 
  • Collins, Harry M. (2004). Gravity's shadow the search for gravitational waves. Chicago: University of Chicago Press. ISBN 0-226-11378-7. 
  • Kennefick, Daniel (2007). Traveling at the speed of thought : Einstein and the quest for gravitational waves. Princeton, N.J: Princeton University Press. ISBN 978-0-691-11727-0. 

Dış bağlantılarDüzenle