Matematikte terim testi, ıraksaklık testi veya ıraksaklık için n'inci terim testi[1] bir sonsuz serinin ıraksaklığını belirlemenin basit bir yöntemidir:

  • ise veya limit yok ise, o zaman ıraksar.

Çoğu yazar bu teste isim vermez veya verirlerse de kısa bir isim verir.[2]

Kullanımı değiştir

Daha güçlü yakınsaklık testlerinin aksine, terim testi kendi başına bir serinin yakınsak seri olduğunu ifade etmez. Bilhassa, testin tersi doğru değildir. Bunun yerine

  •   ise, o zaman   yakınsayabilir de yakınsamayabilir de.

denilebilir. Harmonik seri, terimleri 0'a giden ancak ıraksak olan bir serinin klasik bir örneğidir.[3] Harmonik serilerin daha genel bir sınıfı olan p-serileri, yani

 

testin muhtemel sonuçlarını ortaya çıkaran güzel bir örnektir:

  • p ≤ 0 ise, o zaman terim testi serinin ıraksak olduğunu söyler.
  • 0 < p ≤ 1 ise, o zaman terim testi sonuçsuzdur; ancak seri integral testi ile ıraksaktır.
  • 1 < p ise, o zaman terim testi sonuçsuzdur; ancak seri yine integral testi ile yakınsaktır.

Kanıtlar değiştir

Test genelde devrik biçimde kanıtlanır:

  •   yakınsarsa, o zaman   olur.

Limit manipülasyonu değiştir

sn serini kısmi toplamları ise, o zaman serinin yakınsaması varsayımı, belli bir s için

 

anlamına gelir. O zaman:[4] 

olur.

Cauchy ölçütü değiştir

Serinin yakınsadığı varsayımı Cauchy yakınsaklık testini sağladığı anlamına gelmektedir: Her   için bir N sayısı vardır öyle ki

 

ifadesi n > N ve p ≥ 1 için tutar. p = 1 koymak ise tanımın ifadesini,[5] yani

 

ifadesini kurtarır.

Kapsam değiştir

Terim testinin en basit çeşidi gerçel sayıların sonsuz serilerine uygulanır. Üstteki iki kanıt, Cauchy ölçütünü veya limitin doğrusallığını kullanarak, diğer herhangi bir normlu vektör uzayında da geçerlidir.[6]

Notlar değiştir

  1. ^ Kaczor sf.336
  2. ^ Mesela, Rudin (sf.60) sadece devrik biçimden bahseder ve isimlendirmez. Brabenec (sf.156) n'inci terim testi olarak adlandırır. Stewart (sf.709) Iraksaklık testi demektedir.
  3. ^ Rudin sf.60
  4. ^ Brabenec sf.156; Stewart sf.709
  5. ^ Rudin (sf.59-60) Cauchy ölçütünün başka bir ifadesini kullanarak bu kanıt fikrini kullanır.
  6. ^ Hansen sf.55; Şuhubi sf.375

Kaynakça değiştir

  • Brabenec, Robert (2005), Resources for the study of real analysis, MAA, ISBN 0-88385-737-5 
  • Hansen, Vagn Lundsgaard (2006), Functional Analysis: Entering Hilbert Space, World Scientific, ISBN 981-256-563-9 
  • Kaczor, Wiesława and Maria Nowak (2003), Problems in Mathematical Analysis, American Mathematical Society, ISBN 0-8218-2050-8 
  • Rudin, Walter (1976) [1953], Principles of mathematical analysis (3 bas.), McGraw-Hill, ISBN 0-07-054235-X 
  • Stewart, James (1999), Calculus: Early transcendentals (4 bas.), Brooks/Cole, ISBN 0-534-36298-2 
  • Şuhubi, Erdoğan S. (2003), Functional Analysis, Springer, ISBN 1-4020-1616-6