Dosya:Transmission line animation3.gif

Transmission_line_animation3.gif((300 × 60 piksel, dosya boyutu: 138 KB, MIME tipi: image/gif), döngüye girdi, 100 kare, 5,0 sn)


Özet

Açıklama
English: A wave traveling rightward along a lossless transmission line. Black dots represent electrons, and arrows show the electric field.
Tarih
Kaynak Yükleyenin kendi çalışması
Yazar Sbyrnes321

Lisanslama

Ben, bu işin telif sahibi, burada işi aşağıdaki lisans altında yayımlıyorum:
Creative Commons CC-Zero Bu dosya Creative Commons Evrensel Kamu Malı İthafı altındadır.
Bu çalışmayı oluşturan kişi bu senet ile eser hakkında tüm dünya çapında telif hakkı yasaları kapsamında, yasalar tarafından izin verilen ölçülerde ve diğer benzer tüm haklarından feragat etmiş ve kamu malı olarak nitelendirmiştir. Siz bu çalışmayı ve eseri hiç bir izin almadan ticari amaçlar da dahil olmak üzere kopyalayabilir, değiştirebilir ve serbestçe dağıtabilirsiniz.

Source code

"""
(C) Steven Byrnes, 2014-2016. This code is released under the MIT license
http://opensource.org/licenses/MIT

This code runs in Python 2.7 or 3.3. It requires imagemagick to be installed;
that's how it assembles images into animated GIFs.
"""

from __future__ import division

import pygame as pg
from numpy import cos, pi, sin, linspace

import subprocess, os
directory_now = os.path.dirname(os.path.realpath(__file__))

frames_in_anim = 100
animation_loop_seconds = 5 #time in seconds for animation to loop one cycle

bgcolor = (255,255,255) #background is white
ecolor = (0,0,0) #electrons are black
wire_color = (200,200,200) # wire color is light gray
arrow_color = (140,0,0)

# pygame draws pixel-art, not smoothed. Therefore I am drawing it
# bigger, then smoothly shrinking it down
img_height = 180
img_width = 900
final_height = 60
final_width = 300

# ~23 megapixel limit for wikipedia animated gifs
assert final_height * final_width * frames_in_anim < 22e6

#transmission line thickness, and y-coordinate of the top of each wire
tl_thickness = 27
tl_top_y = 40
tl_bot_y = img_height - tl_top_y - tl_thickness + 2

wavelength = 1.1 * img_width

e_radius = 4

# dimensions of triangular arrow head (this is for the longest arrows; it's
# scaled down when the arrow is too small)
arrowhead_base = 9
arrowhead_height = 15
# width of the arrow line
arrow_width = 6

# number of electrons spread out over the transmission line (top plus bottom)
num_electrons = 100
# max_e_displacement is defined here as a multiple of the total electron path length
# (roughly twice the width of the image, because we're adding top + bottom)
max_e_displacement = 1/60

num_arrows = 20
max_arrow_halflength = 22

def tup_round(tup):
    """round each element of a tuple to nearest integer"""
    return tuple(int(round(x)) for x in tup)

def draw_arrow(surf, x, tail_y, head_y):
    """
    draw a vertical arrow. Coordinates do not need to be integers
    """
    # calculate dimensions of the triangle; it's scaled down for short arrows
    if abs(head_y - tail_y) >= 1.5 * arrowhead_height:
        h = arrowhead_height
        b = arrowhead_base
    else:
        h = abs(head_y - tail_y) / 1.5
        b = arrowhead_base * h / arrowhead_height

    if tail_y < head_y:
        # downward arrow
        triangle = [tup_round((x, head_y)),
                    tup_round((x - b, head_y - h)),
                    tup_round((x + b, head_y - h))]
        triangle_middle_y = head_y - h/2
    else:
        # upward arrow
        triangle = [tup_round((x, head_y)),
                    tup_round((x - b, head_y + h)),
                    tup_round((x + b, head_y + h))]
        triangle_middle_y = head_y + h/2
    pg.draw.line(surf, arrow_color, tup_round((x, tail_y)), tup_round((x, triangle_middle_y)), arrow_width)
    pg.draw.polygon(surf, arrow_color, triangle, 0)

def e_path(param, phase_top_left):
    """
    as param goes 0 to 1, this returns {'pos': (x, y), 'phase':phi},
    where (x,y) is the coordinates of the corresponding point on the electron
    dot path, and phi is the phase for an electron at that point on the path.
    phase_top_left is phase of the left side of the top wire.
    """
    # d is a vertical offset between the electrons and the wires
    d = tl_thickness - e_radius - 2
    # pad is how far to extend the transmission line beyond the image borders
    # (since those electrons may enter the image a bit)
    pad = 36
    path_length = 2*(img_width + 2*pad)
    howfar = param * path_length

    # move right across top transmission line
    if howfar <= path_length / 2:
        x = howfar - pad
        y = tl_top_y + d
        phase = phase_top_left + 2 * pi * x / wavelength
        return {'pos':(x,y), 'phase':phase}
    # ...then move left across the bottom transmission line
    x = path_length - howfar - pad
    y = tl_bot_y + tl_thickness - d
    phase = phase_top_left + 2 * pi * x / wavelength
    return {'pos':(x,y), 'phase':phase}

def main():
    #Make and save a drawing for each frame
    filename_list = [os.path.join(directory_now, 'temp' + str(n) + '.png')
                         for n in range(frames_in_anim)]

    for frame in range(frames_in_anim):
        phase_top_left = -2 * pi * frame / frames_in_anim

        #initialize surface
        surf = pg.Surface((img_width,img_height))
        surf.fill(bgcolor);

        #draw transmission line
        pg.draw.rect(surf, wire_color, [0, tl_top_y, img_width, tl_thickness])
        pg.draw.rect(surf, wire_color, [0, tl_bot_y, img_width, tl_thickness])

        #draw electrons. Remember, "param" is an abstract coordinate that goes
        #from 0 to 1 as the electron position goes right across the top wire
        #then left across the bottom wire
        equilibrium_params = linspace(0, 1, num=num_electrons)
        phases = [e_path(a, phase_top_left)['phase'] for a in equilibrium_params]
        now_params = [equilibrium_params[i] + sin(phases[i]) * max_e_displacement
                           for i in range(num_electrons)]
        coords = [e_path(a, phase_top_left)['pos'] for a in now_params]
        for coord in coords:
            pg.draw.circle(surf, ecolor, tup_round(coord), e_radius)

        #draw arrows
        arrow_params = linspace(0, 0.5, num=num_arrows)
        for i in range(len(arrow_params)):
            a = arrow_params[i]
            arrow_x = e_path(a, phase_top_left)['pos'][0]
            arrow_phase = e_path(a, phase_top_left)['phase']
            head_y = img_height/2 + max_arrow_halflength * cos(arrow_phase)
            tail_y = img_height/2 - max_arrow_halflength * cos(arrow_phase)
            draw_arrow(surf, arrow_x, tail_y, head_y)

        #shrink the surface to its final size, and save it
        shrunk_surface = pg.transform.smoothscale(surf, (final_width, final_height))
        pg.image.save(shrunk_surface, filename_list[frame])

    seconds_per_frame = animation_loop_seconds / frames_in_anim
    frame_delay = str(int(seconds_per_frame * 100))
    # Use the "convert" command (part of ImageMagick) to build the animation
    command_list = ['convert', '-delay', frame_delay, '-loop', '0'] + filename_list + ['anim.gif']
    subprocess.call(command_list, cwd=directory_now)
    # Earlier, we saved an image file for each frame of the animation. Now
    # that the animation is assembled, we can (optionally) delete those files
    if True:
        for filename in filename_list:
            os.remove(filename)

main()

Altyazılar

Bu dosyanın temsil ettiği şeyin tek satırlık açıklamasını ekleyin.

Bu dosyada gösterilen öğeler

betimlenen

9 Kasım 2014

Dosya geçmişi

Dosyanın herhangi bir zamandaki hâli için ilgili tarih/saat kısmına tıklayın.

Tarih/SaatKüçük resimBoyutlarKullanıcıYorum
güncel01.53, 29 Mayıs 201601.53, 29 Mayıs 2016 tarihindeki sürümün küçültülmüş hâli300 × 60 (138 KB)Sbyrnes321don't change the arrow color, for image simplicity
00.39, 10 Kasım 201400.39, 10 Kasım 2014 tarihindeki sürümün küçültülmüş hâli300 × 60 (238 KB)Sbyrnes321User created page with UploadWizard

Bu görüntü dosyasına bağlantısı olan sayfalar:

Küresel dosya kullanımı

Aşağıdaki diğer vikiler bu dosyayı kullanır: