Dinostratus
Dinostratus (Grekçe: Δεινόστρατος; yaklaşık MÖ 390 - 320), Menaechmus'un kardeşi olan Yunan matematikçi ve geometriciydi. Daireyi kareleştirme problemini çözmek için kuadratrisi kullanmasıyla tanınır.
Dinostratus | |
---|---|
Δεινόστρατος | |
Doğum | yaklaşık MÖ 390 Yunanistan |
Ölüm | yaklaşık MÖ 320 Yunanistan |
Milliyet | Yunan |
Tanınma nedeni | Dinostratus kuadratrisi Dinostratus teoremi |
Partner(ler) | Menaechmus |
Kariyeri | |
Dalı | Matematik |
Akademik danışmanları | Knidoslu Eudoxus |
Hayatı
değiştirProclus, Dinostratus'tan “Platon'un ortaklarından Heraklealı Amyclas ve Eudoxus'un Platon'la çalışmış bir öğrencisi olan Menaechmus ve kardeşi Dinostratus, tüm geometriyi daha da mükemmel hale getirdi.” şeklinde bahsetmektedir.
Uzun yıllar boyunca matematik tarihçileri Dinostratus'u daireyi kareleştirme probleminin çözümüne yaklaşan bir şeyi başaran ilk kişi olarak gösterdiler - yani, yalnızca bir pergel ve düz kenar bir cetvel kullanarak belirli bir daireye eşit bir alanı olan bir kare çizmek. Aslında bunu yapmak imkansızdır ancak "Dinostratus kuadratisi" adı verilen özel bir eğri kullanarak buna yaklaştı.
Proclus (MÖ 410? - 485), Dinostratus'un Atina'daki Platon'un (MÖ 427? -347) yakın arkadaşı olduğunu iddia etse de, hayatı bir muammadır. Bunun dışında, onun hakkında bilinen tek şey, Hippias (MÖ 5. yüzyıl) tarafından keşfedilen bir eğri olan kuadratisi meşhur problemin çözümü için kullanmasıydı.
Çalışmaları
değiştirDinostratus'un matematiğe başlıca katkısı, daireyi kareleştirme problemi için verdiği çözümdü. Bu problemi çözmek için, Dinostratus, kendisine daireyi kareleştirmesine (daire ile eşit alanlı bir kare çizmesine) izin veren özel bir özelliği (Dinostratus Teoremi) kanıtladığı Hippias'ın trisektrisini kullandı. Çalışması nedeniyle, trisektrik daha sonra Dinostratus'un kuadratrisi olarak da tanındı.[1] Dinostratus çemberin karesini alma sorununu çözmesine rağmen, bunu tek başına cetvel ve pergel kullanarak yapmadı ve bu nedenle Yunanlar için çözümünün matematiğinin temel ilkelerini ihlal ettiği açıktı.[1] Pappus bunu “Dairenin karesini almak için Dinostratus, Nicomedes ve daha sonraki bazı kişiler tarafından adını bu özellikten alan ve onlar tarafından kare oluşturan [başka bir deyişle kuadratris] olarak adlandırılan belirli bir eğri kullanıldı.” şeklinde anlatmıştır. Bu alıntıdan Hippias'ın eğriyi keşfettiği ancak belirli bir daireye eşit alan karesini bulmak için onu ilk kullanan Dinostratus olduğu anlaşılıyor. Eudemus'tan alıntı yaptığını iddia eden Proclus, “Nicomedes, kökenini, düzenini ve özelliklerini aktardığı konkoidal eğriler aracılığıyla herhangi bir doğrusal açıyı üçe böldü, kendisi de özel karakteristiklerinin kaşifi oldu. Başkaları da aynı şeyi Hippias ve Nicomedes'in kuadratrisleri aracılığıyla yaptı.” yazmıştır. Bu, Dinostratus'un Hippias tarafından keşfedilen kuadratrisi, Eudemus, Dinostratus'tan bahsetmediği için çemberi kare yapmak için kullandığı iddiasını biraz daha az ikna edici kılmaktadır. Ayrıca Hippias'ın kuadratris üzerine bir inceleme yazdığına dair bir fikir vardır ve eğer durum buysa, çemberi kare yapmak için nasıl kullanılabileceğini göstermediğine inanmak zor görünmektedir. Bulmer-Thomas'ın eserinde[2] “... gelecek nesil Dinostratus'un adını, kuadratris aracılığıyla dairenin karesi ile sıkı bir şekilde ilişkilendirmiştir.” şeklinde yazdığı gibi, Dinostratus'un gerçekten de kuadratrisi kullanarak çemberi kareye alan ilk kişi olup olmadığı neredeyse yersiz görünmektedir.
Kendisinden 2.200 yıldan fazla bir süre sonra Ferdinand von Lindemann, tek başına düz bir cetvel ve pergel kullanarak bir daireyi kare yapmanın imkansız olduğunu kanıtlayacaktı.
Dinostratus muhtemelen geometri üzerinde çok daha fazla çalışma yaptı ancak onun hakkında günümüzde hiçbir şey bilinmemektedir.
Notlar
değiştir- ^ a b Boyer, Carl Benjamin (1991). "The age of Plato and Aristotle". A History of Mathematics (2 bas.). John Wiley & Sons, Inc. ss. = 96-97. ISBN 0-471-54397-7.
Menaechmus'un kardeşi Dinostratus da bir matematikçiydi ve kardeşlerden biri küpün iki katına çıkaraılması problemini "çözdüğünde", diğeri çemberin kareleştirilmesini "çözdü". Kuadratris, bir zamanlar basit bir mesele olduğundan, Hippias trisektrisinin Q son noktasının çarpıcı bir özelliği, görünüşe göre Dinostratus tarafından kaydedilmişti. Trisektrisin denklemi (Şekil 6.4) ise, burada a, eğri ile ilişkili ABCD karesinin kenarıdır, [...] dolayısıyla Dinostratus teoremi oluşturulur -yani, 'dur. [...] Dinostratus'un Hippias'ın trisektriksinin çemberin karesini oluşturmaya hizmet ettiğini gösterdiğine göre, eğri daha çok kuadratris olarak biliniyordu. Kuşkusuz, Yunanlar için, eğrinin üçlü ve karesel problemlerde kullanılmasının oyunun kurallarını ihlal ettiği -sadece dairelere ve düz çizgilere izin verildiği- her zaman açıktı. Yazarlarının farkına vardıkları üzere Hippias ve Dinostratus'un "çözümü" karmaşıktı; bu nedenle, kanonik veya gayri meşru daha fazla çözüm arayışı, Yunan geometri uzmanları tarafından birkaç yeni eğrinin keşfedilmesiyle sonuçlandı.
- ^ I. Bulmer-Thomas. "Dinostratus | Encyclopedia.com" (PDF). Dictionary of Scientific Biography (New York 1970-1990). 7 Şubat 2020 tarihinde kaynağından (PDF) arşivlendi.
Konuyla ilgili yayınlar
değiştir- Hermann Schubert (1903). "The Squaring of the Circle". Mathematical essays and recreations. Cornell University Library Historical Math Monographs (İngilizce). ss. 112-143. 23 Mart 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Şubat 2021.
- "Τετραγωνισμός του κύκλου - Η λύση του Δεινόστρατου" [Daireyi kareleştirme - Deinostratos'un çözümü] (Yunanca). 1 Ekim 2020 tarihinde kaynağından arşivlendi.
Kaynakça
değiştir- O'Connor, John J.; Robertson, Edmund F., "Dinostratus", MacTutor Matematik Tarihi arşivi
- G. J. Allman, Greek geometry from Thales to Euclid (Dublin, 1889).
- T. L. Heath, A History of Greek Mathematics I (Oxford, 1921).
- B. L. van der Waerden, Science awakening (Groningen, 1954).