Üs, bazen kuvvet, b taban, n üs veya kuvvet olmak üzere, bn olarak gösterilen ve "b üssü n", "b üzeri n" veya "b'nin n'inci kuvveti" olarak telaffuz edilen matematiksel işlem.[1][2] Eğer n pozitif bir tam sayıysa, tabanın tekrarlanan çarpımına karşılık gelir:

Üslü sayıların gösterimi, taban ve kuvvet (üs).

Buna karşılık, sadece n pozitif bir tam sayı ise geçerlidir, çünkü bir şey -2 tane ya da tane vardır diyemeyiz. Üs yani n sayısının pozitif olmadığı durumlar aşağıda listelenmiştir.[2]

İşlemDüzenle

Kuvvet pozitif iseDüzenle

23 işlemini ele alırsak, "2 üzeri 3" olarak okunan bu işlemin açılımı,   olacaktır. Bu 3 tane 2'nin çarpımının sonucudur.[3]

  işleminin açılımı ise,   olacaktır. Bu ise 4 tane 3'ün çarpımının sonucudur.

Kuvvet negatif iseDüzenle

Bu durumda, üssün pozitif değeri alınır, ve 1, taban üssü kuvvete bölünür:[4]

 

  olur.

Kuvvet rasyonel bir sayı iseDüzenle

  örneğinde olduğu gibi, üs bir rasyonel sayı ise, bu,   olarak, bir köklü sayı oluşturur. Bu konu için köklü sayılar incelenebilinir.

Özellikler ve KurallarDüzenle

  • 1'in bütün kuvvetleri 1'dir.
     
  • 0 dışındaki tüm sayıların 0. kuvveti: 1'dir.
     
  • 0'ın 0 hariç bütün kuvvetleri 0'dır.
     
  •  Bir sayının 1. kuvveti, sayının kendisidir:
     
  • Taban ve üs 0 ise o işlem belirsizdir.
      (belirsiz)
  • Pozitif sayıların pozitif kuvvetleri daima pozitif bir sayı verir.
  • Negatif sayılar parantez içinde ve kuvvetleri çift sayı ise sonuç pozitif olur, kuvvetleri tek sayı ise sonuç negatif olur:
      (Kuvvet çift, taban parantezde.)
      (Kuvvet çift, taban parantezde değil.)
      (Kuvvet tek, daima negatif sonuç verir)
     
  • Tabanları aynı iki üslü sayının çarpımı, taban üzeri kuvvetlerin toplamıdır:[5]
     
  • Tabanları aynı iki üslü sayının bölümü taban üzeri kuvvetlerin farkıdır:[4]
     
    Çarpmadan (üsler toplamından) farklı olarak,  
  • Üslü bir sayının üssü alınırken, içteki kuvvet ile dıştaki kuvvet çarpılır:[4]
     
  • Üsler ortak parantezde dağılma özelliğine sahiptir:[4]
     
  • Üstler ve tabanlar aynı olacak şekilde,
     
  •    ve   hariç, a ve b rasyonel sayı olmak üzere,  , başka bir değiş ile üs ile taban yer değiştirilirse sayının değeri de değişir.
  •    (a ve b rasyonel sayı ise)
  • a ve b 0'dan farklı tam sayılar olmak üzere,[5]
     

ÖrneklerDüzenle

  •   (Bu soru ortaokul seviyesindedir.)

    Çözüm:
     


  •   sayısının yarısı kaçtır? (Bu soru ortaokul - lise seviyelerindedir.)

    Çözüm:
     


  •   ve   ise   (Bu soru lise seviyesindedir.)

    Çözüm:
     
     
     

SıralamaDüzenle

Üslü sayılarda sıralama yaparken ya tabanların ya da üslerin eşitlenmesi gerekir. Ondan sonra sıralama işlemi yapılır.

ÖrneklerDüzenle

  •   sayılarının küçükten büyüğe sırası nedir?

    Çözüm:
    3, 9 ve 27 sayıları 3'ün katı olduğu için, tabanlar 3 yapılabilir:
     
     
    ve   olur.
    Küçükten büyüğe tabanlar aynı olduğu için, kuvvetlere bakarak sıralama yapılır:
     


  •   sayılarının küçükten büyüğe sırası nedir?

    Çözüm:
    Üsler 18'de eşitlenebilir.
     
     
    ve  
    Kuvvetlerin aynı olmasından ötürü, sıralama tabanlara göre yapılabilir:
     

Basamak SayısıDüzenle

Üslü sayıların basamak sayısını hesaplamak kolay değildir. Örneğin   sayısının basamak sayısını, bakarak bulamayız. 195 tane 2'nin çarpımını bulup, kaç basamaklı olduğu hesaplanabilir. Bu yüzden genelde tabanı 10 olan üslü sayıların basamak sayısını bulmaya yönelmek gerekir, örneğin:[6]

  (1'in yanında 3 sıfır)

  (1'in yanında 5 sıfır)

10'un n tane çarpımında, 1 yanına n adet sıfır gelecek şekilde düşünülerek, çıkan sayının kaç basamaklı olduğu bulunur, o halde:

 1'in yanında 7 sıfır   8 basamaklı bir sayı.

 1'in yanında 20 sıfır   21 basamaklı bir sayı.

ÖrneklerDüzenle

  •   kaç basamaklıdır?

    Çözüm:
     125 (3 basamak) sayısının yanına 50 sıfır gelecek, o halde, 53 basamaklı bir sayıdır.


  • 252.82.3 işleminin sonucu kaç basamaklıdır?

    Çözüm:
    (52)2.(23)2.3
    = 54.26.3
    = 54.24.22.3
    = 104.4.3 = 104.12 => 6 basamaklıdır.

Bilimsel GösterimDüzenle

Çok büyük ya da çok küçük sayıların gösteriminde, hem gereken detayda sayının değerini, hem basamak sayısını veren hem de bunu daha okunabilir kolay bir şekilde yapan sayılsal gösterime bilimsel gösterim denir.[3]

GösterimDüzenle

  ve n bir tam sayı olmak üzere, bilimsel gösterim;   olarak yazılır.

Özellikler ve KurallarDüzenle

  • a sayısının 1 ile 10 arasında olması şarttır.
  • Sayıda ',' yok ise, en sağdaki rakamın sonunda virgül varmış gibi düşünülmelidir.
  •   ifadesi yok ise, bu, sayının yanında   olduğu anlamına gelir. Örneğin:  
  • Virgül sağa kaydıkça sayı büyür, 10'nun kuvveti de kayılan basamak sayısı kadar küçülür. Örneğin:  
  • Virgül sola kaydıkça sayı küçülür, 10'nun kuvveti de kayılan basamak sayısı kadar büyütülür. Örneğin:  

ÖrneklerDüzenle

  • Işık saniyede 300000km yol almaktadır. Buna göre ışığın 1 dakikada kaç km yol gittiğinin bilimsel gösterimi nedir?

    Çözüm:
     
     


  •   eşitliğini sağlayan x sayısının bilimsel gösterimi nedir?

    Çözüm:
     
     
     
     

Reel ÜslerDüzenle

Pozitif reel sayıların reel kuvvetleriyle üs alma, ya rasyonel kuvvetlerin süreklilikle reellere genişletilmesiyle ya da genelde olduğu gibi logaritma aracılığıyla üstel olarak ifade edilmesiyle tanımlanabilir. Sonuç her zaman pozitif bir reel sayıdır. Üsleri tam sayı olmayan pozitif reel tabanlar söz konusu olduğunda da, yukarıda pozitif tam sayı tabanlar için belirtilmiş özellikler ve kurallar aynı şekilde geçerlidir.

Öte yandan, negatif bir reel sayının reel kuvvetinin, reel olmayabileceğinden ve birden fazla değere sahip olabileceğinden dolayı, tutarlı bir şekilde tanımlanması çok daha zordur. Bu değerlerden biri, esas değer olarak seçilebilir, fakat aşağıdaki gibi özdeşlikler esas değerler için geçerli olmayabilir:

 

Bu nedenle, tabanı pozitif reel sayı olmayan bir üs alma işlemi genellikle çoğul değerli fonksiyonlar kapsamında incelenir.

Ayrıca BakınızDüzenle

KaynakçaDüzenle

  1. ^ "Compendium of Mathematical Symbols". Math Vault (İngilizce). 1 Mart 2020. 28 Nisan 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Ağustos 2020. 
  2. ^ a b Nykamp, Duane. "Basic rules for exponentiation". Math Insight. 1 Temmuz 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Ağustos 2020. 
  3. ^ a b Gangal, S. K. Gupta & Anubhuti. Composite Mathematics Book - 7 (İngilizce). S. Chand Publishing. ss. 78, 88. ISBN 978-81-219-2742-0. 
  4. ^ a b c d Mathematics for Senior High School Year X (İngilizce). Yudhistira Ghalia Indonesia. ss. 7-9. ISBN 978-979-019-361-1. 
  5. ^ a b Yayınları, Eğitimiz (12 Aralık 2014). Temel Matematik: Sınava Hazırlık - Okula Yardımcı. Eğitimiz Yayınları. ss. 24,26. ISBN 978-605-84701-0-1. 
  6. ^ Choudhari. Modern School Mathematics Book - 6 (İngilizce). Orient Blackswan. s. 4. ISBN 978-81-7370-120-7.