"Soyut matematik" sayfasının sürümleri arasındaki fark

Bazı anlatım bozukluklarını, düşük cümleleri, kaynaksız bilgileri, ve imlâ hatalarını. ~~~~Kartal Roni TÜRKAN
(Maddeyi çeşitlendirdim (Önermeler başlığı ve altındakiler), birkaç yazım hatası düzelttim; o kadar.)
(Bazı anlatım bozukluklarını, düşük cümleleri, kaynaksız bilgileri, ve imlâ hatalarını. ~~~~Kartal Roni TÜRKAN)
Önermenin açık tanımı aşağıda verilecektir. Mantığın konusu önermelerdir. Akıl yürütme "öncül önermelerden yargı çıkarma (hipotezden hüküm çıkarma)" olarak ifade edilebilir. Mantık bilimciler akıl yürütmeyle doğru bilgi üretmenin bilimsel yollarını tümdengelim ve tümevarım diye ikiye ayırırlar. Gerçeğe varmak amacıyla aklın uyması gereken genel düşünce yasalarını ve işlemlerini araştıran Aristoteles (İ.Ö. 384-322), tümdengelimi esas alarak, bugün Klasik Mantık dediğimiz mantık türünün temellerini atmıştır. İki bin yılı aşkın bir süre aklın yoluna egemen olan bu mantık türü, ortaçağ sonlarına doğru, yeni bilgi üretiminde tümdengelimin tek başına yeterli olamayacağı, tümevarımın da önemli olduğu görüşünün yaygınlaşmaya başlamasıyla yeni bir ivme kazanmıştır.
 
18. yüzyıla girildiğinde, Francis Bacon (1561-1626) ile başlayan tümdengelime karşı çıkış ve tümevarımın öne çıkarılması, matematikçilerin konuya ilgi duymaya başlamalarıyla yeni bir döneme girmiştir. Alman matematikçilerinden G. Wilhelm VonLeibniz (1646-1716) ile başlayan yeni yaklaşım, yine Alman matematikçi [[Friedrich L.G. Frege]] (1848-1925) in niceleyicileri ve değişkenleri simgelerle göstermesiyle matematiği tamamen mantıksal bir temele dayandırma çabaları hem mantığın gelişimini hızlandırmış hem de matematiğe yeni bir anlayış kazandırılmıştır. Böylece bu dönemde, [[De Morgan yasası|De Morgan]] (1806-1871), [[G. Boole]] (1815-1864), B. Russel (1872-1970) ile geliştirilen ve simgesel akıl yürütme denilen yöntemle matematikselleşen mantık [[Modern Mantık]] (ya da sembolik mantık, [[matematiksel mantık]]) adını almıştır.
 
Matematik ve mantığın tarihsel gelişimleri pek çok farklılık göstermesine rağmen, bugün bu iki bilim alanını kesin çizgilerle birbirlerinden ayırma olanağı yoktur. Önceleri matematiğin mantıksal bir temele dayandırılması biçiminde başlayan gelişmeler, sonradan mantığın matematikselleştirilmesine yol açmıştır. Dolayısıyla bu iki alan birbirlerinin içine girmiştir. Gene de bugün, [[Mantık|Klasik Mantık]], [[Felsefe]] bilim alanı ve [[Modern Mantık]] da Matematik bilim alanı içinde düşünülür.
 
=== Önermeler İçin Temel Kavramlar ===
Dilimizdeki tümceler emir, istek, ünlem, soru, yargı tümceleri diye sınıflanır. Bu konu yargı tümceleri ile ilgilidir.
 
# [[Ankara]], [[Türkiye]]'nin başkentidir.
# Ankara, Türkiye'nin en kalabalık kentidir.
# [[Güneş]] [[Kuzey|kuzeyden]] doğar.
# Yağmur yağıyor.
# 2 x 3 , 5 etmez.
# Buraya geliniz.
# Bugün günlerden nedir?
# Ah! güzel [[İstanbul]].
 
(1. ve 5. için yanıtınız "doğru", 2. ve 3. için "yanlış" olacaktır. 4.'deki yanıt o andaki duruma bağlıdır; o anda yağmur yağıyorsa "doğru", yağmıyorsa "yanlış" olacaktır. 6., 7., ve 8. tümceler, için bu soruların anlamlı olmayacağı belli dir.)
Aşağıda önermelerin açık tanımları yer almaktadır.
 
# Tanım Bir yargı taşıyan ve bu yargının doğruluğu ya da yanlışlığı kesin olarak belirlenebilen tümcelere [[önerme]] denir.
# Kar beyazdır.
# [[Paris]] [[İngiltere]]'dedir.
# Nereye gidiyorsunuz?
# Uçan kuşlar kanatlıdır.
# Pırasa yararlı bir sebzedir.
# Yüzme tehlikeli bir spordur.
# {Bir ayraç[[Ayraç]] içinde yazılı olan birbütün tümcetümceler yanlıştır.}
 
(Yukarıdaki tümcelerden 1. ve 42. dekinin doğru, 23. dekinin yanlış olduğu bariz dir. O halde, 1. 2. ve 43. deki tümcelerin her biri birer önermedir. 34. ve 56. dekidaki tümceler yargı tümcesi olmadıklarından önerme değildirler. 67. ve 78. deki tümcelerin taşıdıkları yargı yanıtlayan kişiye göre değişecektir. Kimine göre yüzme tehlikeli bir spordur, kimine göre de değildir; ve ya bir kimsenin pırasaya alerjisi vardır; dolayısıyla onu yememelidir: Bu sebze onun için zararlıdır. Fakat bir kimse, bu tümce için ya "doğru", ya da "yanlış" diyebilecektir; hem "doğru" hem de "yanlış" diyemeyecektir. O halde 68. ve 7. tümceleri de birer önermedirler. 89. tümce: Önce bu tümcenin doğru olduğunu varsayalım.; Oo zaman bu tümce yanlıştır,. çünküÇünkü kendisi de bir ayraç içinde yazılıdır. Şimdi bu tümcenin yanlış olduğunu varsayalım.; Öyleyseöyleyse bir ayraç içinde yazılı olan bir tümce doğru olacaktır,olacak demektir. Bu nedenle bu tümce doğrudur. Böylece 89. dekidaki tümce hem doğru hem de yanlış olmaktadır; bir başka ifadeyle, bu tümcenin yargısı kesin olarak belirlenememektedir. Bu nedenle bu tümce bir önerme değildir.)
 
Önermeleri ve mantık bağlaçlarını simgelerle göstermek, önerme işlemlerini simgelere dayandırmak, hem kısalık, hem de kolaylık sağlayacaktır. Bu nedenle genellikle yalın önermeleri ''p'', ''q'', ''r'', gibi küçük harfler ile "''ve''", "''veya''", "''ise''", "''ancak ve ancak''" mantık bağlaçlarını da, sırasıyla, "''''", "''''", "''''", "''''" simgeleriyle göstereceğiz.
 
* ''p'': Bugün hava soğuktur,
 
* ''q'': Bugün hava yağışlıdır
 
yalın önermelerinden "''ve''" bağlacıyla oluşturulan bileşik önerme p ''∧ q'': Bugün hava soğuk ve yağışlıdır olur. ''p'', ''q'' önermelerinden "''ise''" bağlacıyla oluşturulan bileşik önerme ''p → q'': Bugün hava soğuk ise yağışlıdır biçiminde yazılmaktadır. Bir önermenin doğruluğu ya da yanlışlığına o önermenin doğruluk değeri adı verilir. (Doğru bir önermenin doğruluk değeri ''D'', yanlış bir önermenin doğruluk değeri ''Y'' ile belirtilecektir). Yalın bir önermenin doğruluk değerini kolayca belirlenebilmektedir. Bileşik bir önermenin doğruluk değeri ise, söz konusu bileşik önermeyi oluşturan yalın önermelerin doğruluk değerleri ve mantık bağlaçlarına bağlı olarak tanımlanır. Bir önermenin doğruluk değeri seçeneklere bağlı olarak bir çizelge ile gösterilebilir. Böyle bir çizelgeye, o önermenin doğruluk çizelgesi adı verilir.
 
==== Tanım (Bir önermenin değili) ====
Bir p önermesinin doğruluk değeri doğru iken yanlış, yanlış iken doğru yapılarak elde edilen önermeye p nin değili denir ve ~p (değil p diye okunur) simgesiyle gösterilir. ~p nin doğruluk çizelgesi p nin doğruluk değerlerine bağlı olarak şöyle olacaktır:
{| class="wikitable"
|''p''
|''~p''
|-
|''D''
|''Y''
|-
|''Y''
|''D''
|}
Kedi bir kuştur, ''q'': ''5 ≤ 7'' dir önermelerinin değilleri: ''~p'': Kedi bir kuş değildir, ''~q'': ''5 ≤ 7'' değildir (çoğunlukla bunun yerine ''~q'': ''5 ≤ 7'' dir, yazılır) olur.
 
* Kuş kanatlı bir hayvandır.
 
==== Tanım ("ve" Bağlacı) ====
Verilen ''p, q'' önermelerinin "''ve''" bağlacıyla birleştirilmesiyle oluşturulan bileşik önerme, ancak ''p'' ile ''q'' birlikte doğru olduklarında doğru, diğer durumlarda yanlış olarak tanımlanan önermedir. Bu bileşik önermeye ''p'' ve ''q'' nun tümel evetlenmesi denir ve ''p ∧ q'' (''p'' ve ''q'' diye okunur) simgesiyle gösterilir. Bu tanıma göre ''p'' ve ''q'' nun doğruluk değerleri için bütün seçenekler göz önüne alınarak ''p'' ''∧ q'' nun doğruluk çizelgesi şöyle verilir: Yağmur yağıyor, ''q'': Bir hafta 9 gündür, ''r'': ''4'' bir çift sayıdır önermeleri veriliyor. ''p ∧ q'', (''~q ∧ r'') önermelerini ifade ediniz ve doğruluk değerleri, ''p ∧ q'': Yağmur yağıyor ve bir hafta 9 gündür (Doğruluk değeri yanlış), (''~q'') ''∧ r'': Bir hafta 9 gün değildir ve 4 bir çift sayıdır (Doğruluk değeri doğru) olur.
 
==== Tanım ("veya" Bağlacı) ====
Verilen p, q önermelerinin "veya" bağlacıyla birleştirilmesiyle oluşturulan bileşik önerme, ancak p ile q birlikte yanlış olduklarında yanlış diğer durumlarda doğru olarak tanımlanan önermedir. Bu bileşik önermeye p ve q nun tikel evetlenmesi denir ve p ∨ q (p veya q diye okunur) simgesiyle gösterilir. Bu tanıma göre p ∨ q nun doğruluk çizelgesi şöyle olur:
{| class="wikitable"
!''p''
!''q''
!''p ^ q''
|-
|''D''
|''D''
|''D''
|-
|''D''
|''Y''
|''Y''
|-
|''Y''
|''D''
|''Y''
|-
|''Y''
|''Y''
|''Y''
|}
 
* ''p'': [[Ekonomi]] iyiye gidiyor,
* ''q'': Fiyatlar düşüyor
 
''p ∨ q'' nun doğruluk değeri nedir? ''p ∨ q'': Ekonomi iyiye gidiyor veya fiyatlar düşüyor bileşik önermesi elde edilir. Burada ''p'', ''q'' önermelerinin doğruluk değerlerini belirlemeden ''p'' ''∨ q'' bileşik önermesinin doğruluk değeri için bir şey söylenemez. Öte yandan, p, q önermeleri için kimi doğru kimi de yanlış diyecektir. Dolayısıyla ''p'', ''q'' önermelerinin doğruluk değerleri ve buna bağlı olarak ''p ∨ q'' bileşik önermesinin doğruluk değeri, değerlendiren kişiye göre değişecektir. Bu durum şunu gösteriyor: Her önermenin doğruluk değeri evrensel değildir; bazen görelidir; yani kişiye bağlı olabilir, yere bağlı olabilir, zamana bağlı olabilir. Sözgelişi, "Dünya dönüyor" önermesi bugün doğru bir önermedir; ama ortaçağda yanlış bir önerme idi. Yeniden yukarıdaki ''p ∨ q'' bileşik önermesine dönecek olursak, bunun doğru olması ya da yanlış olması gerçek hayattaki durumu göstermez, sadece bileşen önermelerin doğruluk değerlerinin mantıksal sonucunu verir.
 
== Soyutlama ve Genelleme ==
*Genellemeler matematiğin çeşitli branşları arasındaki bağlantıları kolaylaştırır. [[Kategori Teorisi matematiğin]] çeşitli alanlarındaki yapıların yaygınlığını inceler
 
Genellemenin sezgi üzerinedekiüzerindeki etkisi hem özneye hem de kişisel tercihler veya kişisel öğrenme metodlarınametotlarına bağlıdır. Sıklıkla genellemeler sezgiye bir engel olarak görülürler; ama genellemeler, sezgiye bir yardımcı olarak da algılanabilir, özellikle materyal olanı anlamak için [[analojiler]] kurarak sezgisi iyi olanlara yardımcı olabilir.
 
==Pürizm==
 
Matematikçiler daima soyut matematik ile uygulamalı matematik fikirlerinde ayrıma düştüler. Bu tartışmaların en ünlü ve modern örneği [[G.H.Hardy’ninHardy]]’nin [[A Mathematician's Apology|A Mathematician’a Apology’sindeApology]] (Bir Matematikçinin Savunması)’sinde bulunabilir.genellikle Genellikle Hardy’nin uygulamalı matematiği çirkin ve sıkıcı bulduğu düşünülür. Hardy’ni [[resim]] ve [[Şiir|şiirle]] karşılaştırdığı soyut matematiği tercih etse de, soyut matematik ve [[uygulamalı matematik]] arasındaki farkı söyle görüyor, uygulamalı matematik [[fiziksel]] dünyanın doğrularını ararken, soyut matematik fizikten bağımsız doğruları açıklar. Gerçek matematik olarak adlandırdığı ve [[estetik]] değeri olan matematik ile sıkıcı ve pratik değeri olan matematiği böyle ayırır.
[[Hardy]], [[Einstein]] ve [[Dirac]] gibi bazı fizikçileri matematikçilerin arasında görüyor ama the Apology’i yazdığı zamanda, genel görelilik ve kuantum mekaniğini işlevsiz görüyordu ki bu görüş sadece sıkıcı matematiğin işe yarar olduğunu savunmasını da izin veriyordu. Dahası, kısa süre sonra [[matrix teorisinin]] ve [[grup teorisinin]] fiziğe uygulanmayla, gerçek matematiğin de işe yarayabileceğini kabul etti.
 
 
[[Sayı teorisi]] positif sayıların teorisidir. Bölünebilme ve ahenk gibi fikirlere dayanır. Temel teoremi her pozitif sayının asal bölenleri tektir. Bazı durumlarda, bu soyut matematiğe en çok uygulanabilen disiplindir. Örneğin, Goldbach hipotezi kolaylıkla ifade edilebilir.(fakat henüz ispatlanabilmiş veya çürütülebilmiş değil.) ve bazı durumlarda en az uygulanabilen disiplindir. Örneğin, Wiles’in fetmat eşitliğinin basit olmayan çözümleri olmadığı kanıtı otomorfik şekilleri anlamayı gerektirir
 
== Ayrıca bakınız ==
 
* [[Matematik]]
* [[Analoji|Uygulamalı matematikMatematik]]
* [[Matematik|Anoloji]]
 
==Notlar==
{{Kaynakça}}
 
==Ayrıca bakınız==
*[[Uygulamalı matematik]]
*[[Mantık]]
*[[Metamantık]]
*[[Metamatematik]]
 
== Dış bağlantılar ==
74

düzenleme