"Soyut matematik" sayfasının sürümleri arasındaki fark

Maddeyi çeşitlendirdim (Önermeler başlığı ve altındakiler), birkaç yazım hatası düzelttim; o kadar.
(yukarda -> yukarıda)
(Maddeyi çeşitlendirdim (Önermeler başlığı ve altındakiler), birkaç yazım hatası düzelttim; o kadar.)
<blockquote>Biz sırf kendilerini gösterdikleri için onları kabul ederiz, tıpkı matematikteki birçok şeyi kabul ettiğimiz gibi.</blockquote>
 
===19. Yüzyıl===
O dönemde soyut matematiğin ayrı bir disiplin olarak ele alınması fikri ortaya çıkmış gibi gözüküyor. [[Gauss]]'un nesli belirgin bir biçimde soyut ve uygulamalı matematik alanları arasında ayrım yapmadı. Daha sonraki yıllarda uzmanlaşma ve profesyonelleşme (özellikle matematiksel analizdeki Weitrass yaklaşımı) ile alanlar arasındaki ayırım daha da belirginleşti..
 
===20.yüzyıl Yüzyıl===
20.yy'ın başlarında matematikçiler, [[David Hilbert]]'in de güçlü etkisi ile, aksiyomatik metodu kullanmaya başladılar. Soyut matematiğin mantıksal formülasyonu [[Bertrand Russel]] tarafından önerildi; niceleyenler yapısındaki önermeler daha makul görünüyordu, matematiğin büyük bir bölümü aksiyomatikleştirildikçe rigourous proof'un basit kriterlerine maruz kaldılar.
 
Gerçekte, bir aksiyomatik yapıda rigorous kanıt düşüncesine bir şeyler eklemez. Bir görüşe göre -Bourbaki grubunun tarafından tanımlanabilecek- soyut matematik kanıtlanmış olandır. Soyut matematikçilik, eğitim ile ulaşılabilecek bir meslek olarak tanındı
 
== Önermeler ==
==Soyutlama ve Genelleme==
 
=== Matematik ve Mantık ===
İnsan aklının bir ürünü olan matematik, bir bilim alanı olarak, insanlık tarihi kadar eskidir. Matematik, başlangıçtan günümüze kadar doğrultusundan ve tutarlığından hiçbir sapma yapmadan sürekli gelişen bir bilim alanı olmuştur; aynı zamanda bütün bilimlerin gelişmesine öncülük etmiştir. Uygarlığın ulaştığı bugünkü düzeyde matematiğin önemi, rolü açıklanmaya gerek duyulmayacak kadar açıktır. Gelecekte de matematiğin yol göstericiliği olmadan hiçbir bilimin gelişebileceği düşünülemez.
 
Matematik, kendi içinde tutarlı, çelişkilerden arındırılmış, başka hiçbir bilim alanında olmayacak kadar sarsılmaz bir yapıya sahiptir. Matematiği bu derece önemli yapan, sağlam kılan şey, temelinde akıl yürütmeyle çıkartılan evrensel kuralların olmasıdır; ya da bir başka deyişle, kesin kurallar içinde aklın süzgecinden geçmiş olmasıdır, denilebilir.
 
Düşünce, insan aklında oluşan zihinsel bir olgudur; dil aracılığıyla ortaya çıkar, tümcelerle ifade edilir. Düşünceyi konu alan birçok bilim alanı vardır; bunlardan biri de mantıktır. Mantık, doğru ve sistemli düşünmenin adıdır; aynı zamanda doğru ve sistemli düşünmenin yollarını arayan, kurallarını koyan bilim alanıdır. Belki de en eski bilim alanlarından biridir. Mantık bilim alanı düşünceyi her yönüyle ele almaz; bir yargı taşıyan düşünceler mantığın konusu içindedir. Dolayısıyla, bu tür düşüncelerin dildeki ifadesi olan yargı tümceleri mantığın konusu içindedir. Yargı tümceleri bundan böyle önerme diye anılacaktır.
 
Önermenin açık tanımı aşağıda verilecektir. Mantığın konusu önermelerdir. Akıl yürütme "öncül önermelerden yargı çıkarma (hipotezden hüküm çıkarma)" olarak ifade edilebilir. Mantık bilimciler akıl yürütmeyle doğru bilgi üretmenin bilimsel yollarını tümdengelim ve tümevarım diye ikiye ayırırlar. Gerçeğe varmak amacıyla aklın uyması gereken genel düşünce yasalarını ve işlemlerini araştıran Aristoteles (İ.Ö. 384-322), tümdengelimi esas alarak, bugün Klasik Mantık dediğimiz mantık türünün temellerini atmıştır. İki bin yılı aşkın bir süre aklın yoluna egemen olan bu mantık türü, ortaçağ sonlarına doğru, yeni bilgi üretiminde tümdengelimin tek başına yeterli olamayacağı, tümevarımın da önemli olduğu görüşünün yaygınlaşmaya başlamasıyla yeni bir ivme kazanmıştır.
 
18. yüzyıla girildiğinde, Francis Bacon (1561-1626) ile başlayan tümdengelime karşı çıkış ve tümevarımın öne çıkarılması, matematikçilerin konuya ilgi duymaya başlamalarıyla yeni bir döneme girmiştir. Alman matematikçilerinden G. Wilhelm VonLeibniz (1646-1716) ile başlayan yeni yaklaşım, yine Alman matematikçi Friedrich L.G. Frege (1848-1925) in niceleyicileri ve değişkenleri simgelerle göstermesiyle matematiği tamamen mantıksal bir temele dayandırma çabaları hem mantığın gelişimini hızlandırmış hem de matematiğe yeni bir anlayış kazandırılmıştır. Böylece bu dönemde, De Morgan (1806-1871), G. Boole (1815-1864), B. Russel (1872-1970) ile geliştirilen ve simgesel akıl yürütme denilen yöntemle matematikselleşen mantık Modern Mantık (ya da sembolik mantık, matematiksel mantık) adını almıştır.
 
Matematik ve mantığın tarihsel gelişimleri pek çok farklılık göstermesine rağmen, bugün bu iki bilim alanını kesin çizgilerle birbirlerinden ayırma olanağı yoktur. Önceleri matematiğin mantıksal bir temele dayandırılması biçiminde başlayan gelişmeler, sonradan mantığın matematikselleştirilmesine yol açmıştır. Dolayısıyla bu iki alan birbirlerinin içine girmiştir. Gene de bugün, Klasik Mantık, Felsefe bilim alanı ve Modern Mantık da Matematik bilim alanı içinde düşünülür.
 
=== Önermeler İçin Temel Kavramlar ===
Dilimizdeki tümceler emir, istek, ünlem, soru, yargı tümceleri diye sınıflanır. Bu konu yargı tümceleri ile ilgilidir.
 
# Ankara, Türkiye'nin başkentidir.
# Ankara, Türkiye'nin en kalabalık kentidir.
# Güneş kuzeyden doğar.
# Yağmur yağıyor.
# 2 x 3 , 5 etmez.
# Buraya geliniz.
# Bugün günlerden nedir?
# Ah! güzel İstanbul.
 
(1. ve 5. için yanıtınız "doğru", 2. ve 3. için "yanlış" olacaktır. 4.'deki yanıt o andaki duruma bağlıdır; o anda yağmur yağıyorsa "doğru", yağmıyorsa "yanlış" olacaktır. 6., 7., ve 8. tümceler, için bu soruların anlamlı olmayacağı belli dir.)
 
Bu örneklerden anlaşılabileceği gibi, kimi tümceleri taşıdıkları yargıya göre, "doğru" ya da "yanlış" diye değerlendirilir. İşte bu tür bir yargı tümceleri "önerme" diye anılacaktır.
 
Aşağıda önermelerin açık tanımları yer almaktadır.
 
# Tanım Bir yargı taşıyan ve bu yargının doğruluğu ya da yanlışlığı kesin olarak belirlenebilen tümcelere önerme denir.
# Kar beyazdır.
# Paris İngiltere'dedir.
# Nereye gidiyorsunuz?
# Uçan kuşlar kanatlıdır.
# Sinemaya gidelim.
# Pırasa yararlı bir sebzedir.
# Yüzme tehlikeli bir spordur.
# {Bir ayraç içinde yazılı olan bir tümce yanlıştır.}
 
(Yukarıdaki tümcelerden 1. ve 4. dekinin doğru, 2. dekinin yanlış olduğu bariz dir. O halde, 1. 2. ve 4. deki tümcelerin her biri birer önermedir. 3. ve 5. deki tümceler yargı tümcesi olmadıklarından önerme değildirler. 6. ve 7. deki tümcelerin taşıdıkları yargı yanıtlayan kişiye göre değişecektir. Kimine göre yüzme tehlikeli bir spordur, kimine göre de değildir. Fakat bir kimse bu tümce için ya "doğru" ya da "yanlış" diyebilecektir; hem "doğru" hem de "yanlış" diyemeyecektir. O halde 6. ve 7. tümceleri de birer önermedirler. 8. tümce: Önce bu tümcenin doğru olduğunu varsayalım. O zaman bu tümce yanlıştır, çünkü kendisi de bir ayraç içinde yazılıdır. Şimdi bu tümcenin yanlış olduğunu varsayalım. Öyleyse bir ayraç içinde yazılı olan bir tümce doğru olacaktır, demektir. Bu nedenle bu tümce doğrudur. Böylece 8. deki tümce hem doğru hem de yanlış olmaktadır; bir başka ifadeyle, bu tümcenin yargısı kesin olarak belirlenememektedir. Bu nedenle bu tümce bir önerme değildir.)
 
Önermeleri ve mantık bağlaçlarını simgelerle göstermek, önerme işlemlerini simgelere dayandırmak hem kısalık hem de kolaylık sağlayacaktır. Bu nedenle genellikle yalın önermeleri p, q, r, gibi küçük harfler ile "ve", "veya", "ise", "ancak ve ancak" mantık bağlaçlarını da, sırasıyla, "∧", "∨", "→", "↔" simgeleriyle göstereceğiz.
 
* p: Bugün hava soğuktur,
 
* q: Bugün hava yağışlıdır
 
yalın önermelerinden "ve" bağlacıyla oluşturulan bileşik önerme p ∧ q: Bugün hava soğuk ve yağışlıdır olur. p, q önermelerinden "ise" bağlacıyla oluşturulan bileşik önerme p → q: Bugün hava soğuk ise yağışlıdır biçiminde yazılmaktadır. Bir önermenin doğruluğu ya da yanlışlığına o önermenin doğruluk değeri adı verilir. (Doğru bir önermenin doğruluk değeri D, yanlış bir önermenin doğruluk değeri Y ile belirtilecektir). Yalın bir önermenin doğruluk değerini kolayca belirlenebilmektedir. Bileşik bir önermenin doğruluk değeri ise, söz konusu bileşik önermeyi oluşturan yalın önermelerin doğruluk değerleri ve mantık bağlaçlarına bağlı olarak tanımlanır. Bir önermenin doğruluk değeri seçeneklere bağlı olarak bir çizelge ile gösterilebilir. Böyle bir çizelgeye, o önermenin doğruluk çizelgesi adı verilir.
 
==== Tanım (Bir önermenin değili) ====
Bir p önermesinin doğruluk değeri doğru iken yanlış, yanlış iken doğru yapılarak elde edilen önermeye p nin değili denir ve ~p (değil p diye okunur) simgesiyle gösterilir. ~p nin doğruluk çizelgesi p nin doğruluk değerlerine bağlı olarak şöyle olacaktır:
{| class="wikitable"
|p
|~p
|-
|D
|Y
|-
|Y
|D
|}
Kedi bir kuştur, q: 5 ≤ 7 dir önermelerinin değilleri: ~p: Kedi bir kuş değildir, ~q: 5 ≤ 7 değildir (çoğunlukla bunun yerine ~q: 5 ≤ 7 dir, yazılır) olur.
 
* Kuş kanatlı bir hayvandır.
* Ayda canlı yoktur.
* 3 = 5 dir.
* 3 < 4 dür.
 
==== Tanım ("ve" Bağlacı) ====
Verilen p, q önermelerinin "ve" bağlacıyla birleştirilmesiyle oluşturulan bileşik önerme, ancak p ile q birlikte doğru olduklarında doğru, diğer durumlarda yanlış olarak tanımlanan önermedir. Bu bileşik önermeye p ve q nun tümel evetlenmesi denir ve p ∧ q (p ve q diye okunur) simgesiyle gösterilir. Bu tanıma göre p ve q nun doğruluk değerleri için bütün seçenekler göz önüne alınarak p ∧ q nun doğruluk çizelgesi şöyle verilir: Yağmur yağıyor, q: Bir hafta 9 gündür, r: 4 bir çift sayıdır önermeleri veriliyor. p ∧ q, (~q ∧ r) önermelerini ifade ediniz ve doğruluk değerleri, p ∧ q: Yağmur yağıyor ve bir hafta 9 gündür (Doğruluk değeri yanlış), (~q) ∧ r: Bir hafta 9 gün değildir ve 4 bir çift sayıdır (Doğruluk değeri doğru) olur.
 
==== Tanım ("veya" Bağlacı) ====
Verilen p, q önermelerinin "veya" bağlacıyla birleştirilmesiyle oluşturulan bileşik önerme, ancak p ile q birlikte yanlış olduklarında yanlış diğer durumlarda doğru olarak tanımlanan önermedir. Bu bileşik önermeye p ve q nun tikel evetlenmesi denir ve p ∨ q (p veya q diye okunur) simgesiyle gösterilir. Bu tanıma göre p ∨ q nun doğruluk çizelgesi şöyle olur:
{| class="wikitable"
!p
!q
!p ^ q
|-
|D
|D
|D
|-
|D
|Y
|Y
|-
|Y
|D
|Y
|-
|Y
|Y
|Y
|}
 
* p: Ekonomi iyiye gidiyor,
* q: Fiyatlar düşüyor
 
p ∨ q nun doğruluk değeri nedir? p ∨ q: Ekonomi iyiye gidiyor veya fiyatlar düşüyor bileşik önermesi elde edilir. Burada p, q önermelerinin doğruluk değerlerini belirlemeden p ∨ q bileşik önermesinin doğruluk değeri için bir şey söylenemez. Öte yandan, p, q önermeleri için kimi doğru kimi de yanlış diyecektir. Dolayısıyla p, q önermelerinin doğruluk değerleri ve buna bağlı olarak p ∨ q bileşik önermesinin doğruluk değeri, değerlendiren kişiye göre değişecektir. Bu durum şunu gösteriyor: Her önermenin doğruluk değeri evrensel değildir; bazen görelidir; yani kişiye bağlı olabilir, yere bağlı olabilir, zamana bağlı olabilir. Sözgelişi, "Dünya dönüyor" önermesi bugün doğru bir önermedir; ama ortaçağda yanlış bir önerme idi. Yeniden yukarıdaki p ∨ q bileşik önermesine dönecek olursak, bunun doğru olması ya da yanlış olması gerçek hayattaki durumu göstermez, sadece bileşen önermelerin doğruluk değerlerinin mantıksal sonucunu verir.
 
== Soyutlama ve Genelleme ==
Soyut matematikteki temel kavramlardan biri genellemeler fikridir; soyut matematik, genellemelere karşı genel olarak yükselen bir trend gösterir.
 
74

düzenleme