"Ferdinand Georg Frobenius" sayfasının sürümleri arasındaki fark

k
Bot v3: Kaynak ve içerik düzenleme (hata bildir)
k (düzeltme)
k (Bot v3: Kaynak ve içerik düzenleme (hata bildir))
 
== Hayatı ==
Ferdinand Georg Frobenius 26 Ekim 1849'da [[Berlin]]'in bir banliyösü olan [[Charlottenburg]]'da<ref>{{Web kaynağı|url=http://www-history.mcs.st-and.ac.uk/BirthplaceMaps/Berlin.html|tarih=October 26, Ekim 2010|başlık=Born in Berlin}}</ref> [[Protestanlık|Protestan]] bir papaz olan babası Christian Ferdinand Frobenius ve annesi Christine Elizabeth Friedrich'in çocukları olarak doğdu. Joachimsthal Gymnasium'a 1860'da neredeyse on bir yaşındayken girdi.<ref name="Bio">{{Web kaynağı|url=http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Frobenius.html|başlık=Biography|tarih=26 OctoberEkim 2010}}</ref> 1867'de mezun olduktan sonra, üniversite eğitimine başladığı [[Göttingen Üniversitesi]]'ne gitti, ancak burada [[Leopold Kronecker|Kronecker]], [[Eduard Kummer|Kummer]] ve [[Karl Weierstrass]]'ın derslerine katıldığı Berlin'e dönmeden önce sadece bir dönem çalıştı. Doktorasını [[Karl Weierstrass|Weierstrass]] gözetiminde 1870'te aldı. Tezi diferansiyel denklemlerin çözümü üzerineydi. 1874'te, ilk olarak Joachimsthal Gymnasium'da ortaokul düzeyinde öğretmenlik yaptıktan sonra, sonra Sophienrealschule'de, Berlin Üniversitesi'ne bir matematik profesörü (extraordinarius) olarak atandı.<ref name="Bio" /> Frobenius, [[ETH Zürih|Eidgenössische Polytechnikum]]'da sıradan bir profesör olarak randevu almak için [[Zürih]]'e gitmeden bir yıl önce ancak Berlin'deydi. Frobenius, 1875 ile 1892 arasında on yedi yıl boyunca Zürih'te çalıştı. Orada evlendi, ailesini büyüttü ve matematiğin çok farklı alanlarında çok önemli işler yaptı. Aralık 1891'in son günlerinde Kronecker öldü ve bu nedenle Berlin'deki sandalyesi boşaldı. Frobenius'un Berlin'i matematiğin ön saflarında tutacak doğru kişi olduğuna şiddetle inanan Weierstrass, Frobenius'un atanması için hatırı sayılır nüfuzunu kullandı. 1893'te [[Prusya Bilimler Akademisi]]'ne seçildiği Berlin'e döndü.
 
== Çalışmaları ==
[[Grup teorisi]], Frobenius'un kariyerinin ikinci yarısındaki başlıca ilgi alanlarından biriydi. İlk katkılarından biri, soyut gruplar için [[Sylow teoremleri]]nin kanıtıydı. Daha önceki kanıtlar [[Permütasyon grubu|permütasyon grupları]] içindi. İlk Sylow teoremini (Sylow gruplarının varlığına ilişkin) kanıtı, bugün sıklıkla kullanılanlardan biridir.
 
* Frobenius ayrıca aşağıdaki temel teoremi kanıtlamıştır: Eğer pozitif bir ''n'' tam sayısı, bir ''G'' [[Sonlu grup|sonlu grubunun]] |''G''| sırasını bölerse, ardından ''x''<sup>''n''</sup> =1 denkleminin ''G''’deki çözüm sayısı bazı pozitif ''k'' tam sayıları için ''kn''’ye eşittir. Ayrıca şu problemi de ortaya koydu: Eğer, yukarıdaki teoremde, ''k''&nbsp;=&nbsp;1 ise, ''x''<sup>''n''</sup> = 1 denkleminin çözümleri ''G''’de bir alt grup oluşturur. Yıllar önce bu problem [[çözülebilir grup]]lar için çözüldü.<ref>{{kitap kaynağı |ad=Marshall, Jr. |soyadı=Hall |başlık=The Theory of Groups |seri=2nd |konumyer=Providence, Rhode Island |yayıncı=AMS Chelsea |yıl=1999 |sayfalar=145–146 145-146|isbn=0-8218-1967-4 }} {{Google books |id=oyxnWF9ssI8C |page=145 |title=Theorem 9.4.1. }}</ref> Ancak 1991 yılında [[Sonlu basit grupların sınıflandırılması|, sonlu basit grupların sınıflandırılmasından]] sonra, bu problem genel olarak çözüldü.
 
Daha da önemlisi, grupların yapısını incelemek için temel araçlar olan [[Karakter teorisi|grup karakterleri]] ve [[Grup gösterimi|grup temsilleri]] teorisini yaratmasıydı. Bu çalışma, [[Frobenius karmaşıklığı]] kavramına ve şimdi [[Frobenius grubu|Frobenius grupları]] olarak adlandırılan grupların tanımlanmasına yol açtı. Aşağıda ifade edilen şeklinde bir ''H'' < ''G'' alt grubu varsa, ''G'' grubunun bir Frobenius grubu olduğu söylenir:
: <math>N=G\,-\!\!\bigcup_{x\in G-H}\!\!H^x</math>
 
''G''’nin etkisiz elemanı ile birlikte [[John G. Thompson]]'ın 1959'da gösterdiği gibi [[Nilpotent grubu|nilpotent]] (üstelsıfır) olan bir alt grup oluşturur.<ref>{{Dergi kaynağı | doi = 10.1007/BF01162958| başlık = Normalp-complements for finite groups| dergi = Mathematische Zeitschrift| cilt = 72| sayfalar = 332–354332-354| yıl = 1959| soyadı1 = Thompson | ad1 = J. G. | s2cid = 120848984}}</ref> Bu teoremin bilinen tüm kanıtları karakterlerden yararlanır. Frobenius, karakterler hakkındaki ilk makalesinde (1896), tüm tekil asal sayılar ''p'' için, (1/2) (''p''<sup>3</sup> - ''p'') dereceli <math>PSL(2,p)</math> grubunun karakter tablosunu oluşturdu (Bu grup ''p'' > 3 için basitçe sağlanır). [[Simetrik ve alternatif grupların temsil teorisi]]ne de temel katkılarda bulundu.
 
=== Sayı teorisine katkıları ===
922.659

değişiklik