"Merkezî işlem birimi" sayfasının sürümleri arasındaki fark

değişiklik özeti yok
k (olmasada → olmasa da)
[[1964]] senesinde [[IBM]], birkaç seri bilgisayarda kullanılan ve aynı programları değişik hız ve performans değerleriyle yürütebilen [[System/360]] adlı bilgisayar mimarisini tanıttı. O dönemde çoğu elektronik bilgisayar, aynı üreticiden çıkmış olsa bile bir diğeriyle uyumsuzluk sorunu yaşarken bu gelişim oldukça önemli bir yer tutmuştu. Bu gelişimi kolaylaştırmak için, IBM mikro-program (veya mikro-kod) konseptini kullanmaya başladı, ki bu konsept modern MİB’lerın çoğunda hala geniş bir biçimde kullanılmaktadır (Amdahl et al. 1964). System/360 mimarisinin popülerliği, onu birkaç onyıl boyunca anaçatı bilgisayar pazarını ele geçirmesini, ve [[IBM zSeries]] gibi benzer modern bilgisayarlarda kullanılır hale getirecek bir efsane olmasını sağladı. Aynı yılda (1964), [[Digital Equipment Corporation]] (DEC), bilimsel ve araştırma pazarlarını hedef seçmiş bir başka bilgisayar olan PDP-8’i piyasaya sürdü. Daha sonları ise DEC, SSI tümleşik devrelere kurulmuş olan ancak sonunda LSI bileşenlerin pratikleşmesiyle bunlarla gerçekleştirilmiş ve oldukça popüler olan PDP-11’i piyasaya sunacaktı. SSI ve MSI öncelleriyle sahip olduğu fark ile, PDP-11’in ilk LSI gerçekleştirilmesi, 4 LSI tümleşik devreden oluşan bir MİB’e sahipti ([[Digital Equipment Corporation]] 1975).
 
Transistör bazlı bilgisayarların, öncellerine kıyasla fazla sayıda ve belirgin avantajları vardı. Yüksek güvenilirlik ve az güç tüketiminin yanı sıra, transistörler sayesinde MİB çalışma hızları transistörlerin sahip olduğu düşük geçiş süreleri sayesinde oldukça artış gösterdi. Bu dönemde, yüksek güvenilirlik ve geçiş süresinde kisüresindeki belirgin hız artışı sayesinde, MİB’lerin saat hızlarında [[Hertz (birim)|MHz]]'in on katları seviyesine erişildi. Ek olarak, ayrık transistör ve tümleşik devre MİB’leri sık kullanımda iken, [[SIMD]] (Tek Komut Çoklu Data) vektör işlemcileri gibi yeni yüksek performans tasarımlar ortaya çıkmaya başladı. Başlarda deneysel tasarım olan bu sistemler, daha sonraları ise [[Cray Inc.]] gibi firmalar tarafından üretilmiş, uzmanlaşmış [[süper bilgisayar]]<nowiki/>ların çağına adım atılmasını sağlayacaktı.
 
=== Mikroişlemciler ===
 
=== Yürütme (execute) ===
Bu evrede, istenen işin gerçekleşebilmesi için MİB'nin birçok kısmı bağlı haldedir. Örneğin, bir toplama işlemi istendiğinde, aritmekaritmetik ve mantık birimi (Arithmetic Logic Unit) bir kısım giriş ve çıkışlara bağlı olacaktır. Girişler toplamada kullanılacak sayıları içerirken, çıkışlar ise sonucsonuç değerini tutacaktır. ALU, girişlerde basit aritmetik ve mantık işlemlerini gerçekleştirecek devre yapılarına sahiptir. Eğer toplama işlemi MİB'nin gerçekleştirebileceğinden çok büyük sonuçlar üretiyorsa, bayrak yazmaçlarındayazmaçlarındaki ki aritkemikaritmetik taşma bayrağı kullanılacaktır.
 
=== Geri yazma (writeback) ===
Kötü durum koşulunda bu periyot, sinyalin ilerleme hızından veya yayılmasından daha uzun olmalıdır. Saat periyodu kötü durum yayılma gecikmesinden yeterince yüksek tutulduğunda, tüm MİB'nin ve veriyi saat sinyalinin iniş/çıkışları civarında ilerletmesini tasarlamak mümkün olacaktır. Bu durum, MİB'yi etkili biçimde sadeleştirme avantajını hem dizayn açısından, hem de bileşen sayısı açısından sağlayacaktır. Ancak bunun yanında da, tüm MİB'nin en yavaş elemanını, diğer bölümler çok daha hızlı çalışabilecekken beklemek zorunda kalması dezavantajını da doğuracaktır. Bu kısıtlama, gelişen MİB paralleliğinin çeşitli metotları ile telafi edilmektedir.
 
Mimari geliştirmeler tek başına global senkronize MİB'lerin dezavantajlarını ortadan kaldıramaz. Örneğin, bir saat sinyali, başka elektrik sinyalinin gecikmesine de bağlıdır. Artan kompleks MİB yapılarında kiyapılarındaki yüksek saat hızları, saat sinyalini tüm birim boyunca senkron (aynı fazda) tutmayı zorlaştırır. Bu durum birçok modern MİB'nin birden fazla eş saat sinyali kullanmasına yol açmıştır; böylece tek sinyalin gecikmesi, MİB'nin aksamasını engellemiştir. Diğer bir önemli nokta ise, saat hızları arttıkça, MİB'nin ürettiği ısıda aynı şekilde artmaktadır. Sabit biçimde değişen saat, birçok bileşenin de kullanılmaksızın değişmesine yol açmaktadır. Genel olarak, değişen her bir bileşen, sabit bir bileşenden daha çok enerji tüketmektedir. Bu sebeple, saat hızı arttıkça, ısı dağılması artar, bu da MİB'de daha etkili soğutma yollarının kullanılmasını gerektirir.
 
İstenmeyen bileşen geçişini engellemenin bir yolu, saat geçitleme yöntemidir. Bu yöntemle istenmeyen bileşenlere giden saat sinyali kapatılır. Ancak bunu uygulaması zor olduğundan düşük güç tüketimli tasarımların dışında kullanımı pek söz konusu değldir. Global saat sinyaline sahip olan problemlerin çözümünde kiçözümündeki diğer bir yol ise, tüm saat sinyallerinin birden kaldırılmasıdır. Global saat sinyalinin kaldırılması tasarım sürecini oldukça zorlaştırsada, asenkron (veya saatsiz) tasarımlar güç tüketiminde ve ısı dağılımında sahip oldukları büyük avantajları da beraberinde getirmektedirler. Nadir olmakla birlikte, tüm MİB'lerin global saat sinyali içermeden üretildiği de olmuştur. Bunlardan iki önemli örnek vermek gerekirse ARM uyumlu AMULET ve MIPS R3000 uyumlu MiniMIPS’i gösterebiliriz. Bazı MİB tasarımlarında saat sinyalini tamamiyle çıkarmak yerine, asenkronluk belli bölümlere uygulanmıştır, tıpkı asenkron ALU’ların skalar üstü (superscalar) boruhattı uygulamasıyla birleştirilerek bazı aritmetik performans kazançlarının elde edilmesinde olduğu gibi. Her ne kadar asenkron tasarımların, senkronize karşılıklarından daha iyi bir performans verebileceği çok açık olmasa da, baist matemaiksel işlemlerde daha üstün olduğu bir gerçektir. Bu özelliği, mükemmel güç tüketimi ve ısı dağılım özellikleriyle de birleşince, tümleşik bilgisayarlarda kullanılmak için oldukça uygun olduğunu ortaya çıkarmaktadır.
 
=== Paralellik ===
== Çekirdek Sayısı ile İş Parçacığı Sayısının Karıştırılması ==
 
Çekirdek sayısı; tek bir bilgi işlem bileşeninde kibileşenindeki (yonga ya da çip) bağımsız merkezî işlem birimi sayısını belirten donanım terimidir. İş parçacığı sayısı ile karıştırılmaktadır. Bazen pazarlamacılar tek çekirdekli iki iş parçacıklı işlemcileri "çift çekirdekli" diye tanıtabilmektedir.<ref name="Televizyon Programı">{{Web kaynağı | soyadı1 = UZUN | ad1 = Murat | başlık = Teknopedi 4. Bölüm | url = https://www.youtube.com/watch?v=xT7B_5vhmlQ | yayıncı = Kampüs TV | erişimtarihi = 22.01.2015 | arşivurl = http://web.archive.org/web/20160103232013/https://www.youtube.com/watch?v=xT7B_5vhmlQ | arşivtarihi = 3 Ocak 2016}}</ref><ref>http://ark.intel.com/tr/products/84992/Intel-Core-i7-5550U-Processor-4M-Cache-up-to-3_00-GHz</ref>
 
==Kaynaklar==
36.747

değişiklik