Kuantum mekaniği: Revizyonlar arasındaki fark

[kontrol edilmemiş revizyon][kontrol edilmemiş revizyon]
İçerik silindi İçerik eklendi
Sinsi sansar (mesaj | katkılar)
Sinsi sansar (mesaj | katkılar)
56. satır:
 
== Klasik mekanik, kuantum mekaniği ve kuantum mekaniği'nin matematiği ==
[[Klasik mekanik]], nesnelerin konum ve momentumları bilgilerini kullanarak, çeşitli kuvvet alanları altında nasıl hareket etmeleri gerektiğini bulmaya çalışır. Kökleri çok eskiye dayansa da başlangıcının [[Newton]]'un Principia'sı olduğunu kabul etmek yanlış olmaz. Daha sonra Euler, Lagrange, Jacobi, Hamilton, Poisson, Maxwell, Boltzman (İstatiksel mekanik ve klasik elektromanyetik teoriyi de klasik mekaniğe katıyorumkatılabilir) gibi birçok ad tarafından çok çeşitli bakış açıları geliştirilmiş ve birçok alanda başarılı bir şekilde uygulanmıştır. Klasik mekaniğin tamamlanmasının Einstein'ın görelilik kuramları ile gerçekleştiğini söylemek yanlış olur. Klasik mekanik çok başarılı olmasına karşın, 1800'lü yılların sonlarına doğru, siyah cisim ışıması, tayf çizgileri, fotoelelektrik etki gibi bir takım olayları açıklama da yetersiz kalmıştır. Açıklamaların yanlışlığı bilim adamlarının yetersizliğinden değil aksine klasik mekaniğin yetersizliğinden kaynaklanıyordu. Klasik mekanikteki sorunun ne olduğunu anlatmak aşırı teknik kaçacaktır, ancak en yalın halde klasik mekanik Evren'ievreni sürekli olarak modelliyordumodeller ve bu yaklaşım kendi içinde tutarlı degildir. BuBunu modellemegormek yanlıştıiçin çünkütermodinamikteki üç''eş-dağılım'' prensibine ("{{lang|en|equipartition theorem}}") bakmalıyız. Üç konum (x, y, z) ve üç momentumla (px, py, pz) tanımlanan parçacıklar, sonsuz sayıda parametreyle tanımlanmanan alanlarla bir aradaydılarbiraradadır. Eş -dağılım kuramınca ("{{lang|en|equipartition theorem}}") sistemin enerjisinin, denge durumunda, sistemsistemin tüm bileşenlerine eşit biçimde dağılması gerekir. Alanlar sonsuz bileşene sahip olduğundan bütün enerji alanlara kalırdağılmalıdır. (Daha teknik daha doğrubir ifade ile, sistemindenge durumundaki sistemde enerji, bütün özgürlük derecelerine eş olarak dağılır,; alanlar sonsuz özgürülük derecesine sahip olduğu için bütün enerji alanlara akarakmalıdır.) ElbetteEvren dengede varsayılırsa, deneysel olarak böyle bir şeygözlemin olmaması, klasil mekaniğin "süreklilik" paradigmasında bir soruna işaret gözlenmezeder.
 
Kuantum kuramı ise olayı bambaşka bir şekilde ele alır. Parçacıklar artık doğrudan 3 konum ve 3 momentumla tanımlanmak yerine bir "dalga fonksiyonu" ile tanımlanırlar. Bu dalga fonksiyonu parçacığın bütün bilgisini içinde barındırır ve dalga fonksiyonuna uygun "sorular" sorularak gerekli bilgi alınır. Örneğin konum bilgisi için dalga fonksiyonuna "parçacık nerede?" sorusunu sorarsınız, o ise size parçacığın soruyu sorduğunuz anda nerede olabileceğini söyler. Buradaki kritik nokta olabilirliktir. Bu, dalga fonksiyonunun bir de "olasılık fonksiyonu" olarak anılmasina neden olmaktadir. Daha sonra, bu olasılıksal durumu bilincli olup olmama durumuna baglayan Kopenhag Yorumu ortaya atılmıştır. (Matematik altyapısı yetersiz olanlar denklemleri görmezden gelebilirler.) Matematiksel olarak olayı şöyle tanımlayabiliriz:
68. satır:
<math>T=\frac{p^2}{2m}</math> <br /> şeklinde tanımlanırken kuantum fiziğinde kinetik enerji operatörü yine aynı ifadeyle yazılır. Tek fark "p" artık bir sayı değil bir operatördür. Bu bize Ehrenfest teorimince sağlanır ve bütün operatörleri klasik yasaları kullanarak türetebiliriz. Bu noktada "Peki, dalga fonksiyonu nedir?" sorusuna dönmeliyiz. Dalga fonksiyonu bize Schrödinger denklemi tarafından verilen, bir bakıma parçacığın kimlik kartıdır.Bir boyutta Schrödinger denklemi;<br />
<math>i\hbar \frac{d}{dt}\Psi=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\Psi+V(x,t)\Psi</math> <br />
şeklinde yazılabilir. İfade bir bakıma enerji denklemidir ve bahsi geçen "kimlik" kartını sistemin enerjisine göre verir. (Burada kimlikten kasıt, parçacığın elektron mu yoksa nötron mu olduğu değil, momentumu, konumu, kinetik enerjisi gibi gözlemlenebilirleridir.) Bu "masum" denklem çözüldüğünde parçacığımızın dalga fonksiyonunu elde etmiş oluruz. En basit atom olan hidrojen atomunun zamandan bağımsız analitik olarak çözülmesi bile gerçekten büyük bir meseledirzordur, neyse ki belli formalizmlerle, daha karmaşik sistemleri yaklaşımlar yaparak çözmek mümkün oluyor.
 
Kuantum mekaniği temelinde bir olasılık teorisidir. Dalga fonksiyonu içinde sistemin bütün olası durumlarını barındırır. Siz soruyu sorduğunuzda size en olası cevabı verir, ancak soru sorma işlemi dalga fonksiyonunu "dağıtır" ve siz bir daha sorduğunuz zaman artık başka bir cevap alırsınız. Bunun yanı sıra kuantum mekaniği yapısı ötürü belirsizlikler barındırır. Bu belirsizlikler bazı gözlemlenebiliri ne kadar iyi bilirseniz diğer bazıları hakkında o kadar az şey bileceğinizi söyler. Örneğin konum ve momentum böyle bir çift oluşturur. Birini ne kadar iyi bilirseniz diğeri hakkında o kadar az bilginiz olur. Bu Heisenberg belirsizlik ilkesi olarak bilinir. Konum ve momentum için Heisenberg belirsizlik ilkesi şöyle gösterilir: